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Abstract

An exposure assessment is conducted for psychrotrophic and mesophilic Bacillus cereus in a cooked chilled vegetable

product. A model is constructed that covers the retail and consumer phase of the food pathway, using the output of a similar

model on the industrial process as input. Microbial growth is the predominant process in the model. Variability in time and

temperature during transport and storage is included in the model and different domestic refrigerator temperature distributions

are compared. As an end point, probable levels of B. cereus colony forming units (cfu) in packages of vegetable purée are

predicted at the moment the consumer takes the product from its refrigerator, that is prior to a cooking process. The

psychrotrophic strain is predicted to end up above a threshold level of 105 cfu/g in 0.9% to 6.3% of the vegetable purée

packages, depending on domestic refrigerator temperature. Accounting for spoilage this reduces to 0.3% to 2.4%. Even if the

purée is stored at 4 jC in the domestic refrigerator and use-by-date (UBD) is respected, the threshold level may be passed. For

the mesophilic strain the threshold level is rarely passed, but in contrast to the total viable count, the spore load at the end point

is predicted to be higher than in the psychrotrophic strain. Our study illustrates how an exposure assessment model, which may

be used in quantitative risk assessment, can integrate expertise in modelling, food processing and microbiology over the food

pathway, and thus evaluate food safety, identify gaps in knowledge and compare risk management measures. As important gaps

in knowledge, the lack of sporulation and germination models and data, validated non-isothermal growth models and a spoilage

model useful for risk assessment are identified. Knowledge of the dose–response relationship is limited and does not allow a

full risk assessment. It is shown that exposure can be lowered by lowering domestic refrigerator temperatures, and less so much

by monitoring and withdrawing contaminated products at the end of industrial processing.
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1. Introduction

In Europe, the production and sales of cooked

chilled foods, also known as ‘refrigerated processed
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foods of extended durability’ (REPFEDs), are increas-

ing (Hauben, 1999; Peck, 1999). For instance, the

annual turnover of the cooked chilled food sector in

France increased twofold between 1990 and 1994, and

in 2000 the UK retail prepared chilled food market

represented approximately £5000 million with a mar-

ket value increase of 9% between 1999 and 2000

(Falconnet and Litman, 1996; Chilled Food Associa-

tion, 2001). After receiving a mild heat treatment, these

foods are to be stored in a chill chain from food

manufacturer to the consumer. This treatment typically

raises opportunities for pathogenic spore-forming bac-

teria like non-proteolytic Clostridium botulinum and

Bacillus cereus, which may survive the heat treatment

and grow at low temperatures (ICMSF, 1996; Lund

and Peck, 2000).

A quantitative microbiological risk assessment

(QMRA) approach is applied to study the potential

impact of the increased popularity of REPFEDs on

public health. QMRA is increasingly used to evaluate

risks in the context of food safety (e.g. Notermans et

al., 1997; Cassin et al., 1998). It offers a structured

approach to assess risks associated with microorgan-

isms in foods. If a risk model is constructed which

describes the transmission of the hazard along the

food pathway, the effects of intervention to lower the

risk can be assessed and compared, thus assisting

policy makers to come to decisions to increase food

safety.

In the context of a collaborative EU-funded project

on QMRA of spore-forming pathogens in REPFEDs

(Carlin et al., 2000a), this study describes a model of

B. cereus in the retail and consumer phase of the food

pathway of a specific vegetable REPFED. Of these

phases, the consumer phase is of particular interest,

because it is less controlled than other phases of the

food pathway. During transport or at home, consumer

storage temperatures may be too high to maintain the

chill chain and thus insufficient to prevent growth of

(psychrotrophic) B. cereus.

As input, the model uses the results of a similar

model that describes the industrial processing of this

REPFED (Nauta, 2001). The exposure assessment

ends at the moment the consumer takes the product

from its refrigerator. As the knowledge of the dose–

response relationship for B. cereus is limited, the

exposure assessment cannot be extended to a com-

plete risk assessment. However, the impact of differ-

ent processing steps on the final exposure can be put

forward, and thus insight can be gained on the

health effects of intervention at different processing

steps.

The hazard studied is B. cereus, a pathogen for

which both psychrotrophic strains and mesophilic

strains are recognised. The actual harmful agent is

not the bacterial cell, but the toxin that it may produce.

Several types of toxin exist, of which diarrheal toxins

are most commonly associated with food-borne illness

(McKillip, 2000; Lund et al., 2000). In a REPFED

containing vegetables, one typically finds diarrheal

toxin producing strains (Choma et al., 2000). Produc-

tion of this toxin most likely occurs in the small

intestine of the host (Granum, 1997).

The objectives of the paper are to illustrate how

this part of the food pathway may be modelled for an

exposure assessment, to compare the exposure to

psychrotrophic and mesophilic strains of B. cereus,

to show the impact of post-industrial storage condi-

tions on exposure, and to indicate what type of data

and additional research are needed for QMRA that

includes the consumer phase of the food pathway.

2. Methods

A risk model is set up following the Modular

Process Risk Model (MPRM) methodology. This

methodology is a variant of the Process Risk Model

introduced by (Cassin et al., 1998) and has been

described in detail elsewhere (Nauta, 2002, 2001;

Anonymous, 2002). In the MPRM the transmission

of the hazard is modelled by splitting up the food

pathway into smaller steps (modules). Characteristi-

cally each module is assigned as one of six basic

processes: growth, inactivation, mixing, partitioning,

removal or cross-contamination. All of these may give

rise to a change in prevalence (P), unit size (U ) and/

or number of bacteria per unit (N). An appropriate

model is chosen to describe these changes, based on

the purpose of the risk model and the available data.

The risk model is a stochastic model, analysed by

Monte Carlo simulation. Input and output are given in

terms of probability distributions reflecting uncer-

tainty or variability (Vose, 2000).

Typically, MPRM starts with a description of the

food pathway and the processes that are relevant to
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assess the risk, not with collection of the available

data. This may imply that parameters have to be

defined in the process models for which the value

cannot be estimated on the basis of scientific data. In

that case food microbiology experts participating in

the EU-funded project (Carlin et al., 2000a) were

asked to give their expert opinion. These opinions

were discussed in plenary meetings, until consensus

was reached. Generally, the minimum (min), most

likely (ml) and maximum (max) values of the param-

eter, as assessed by the experts, were implemented as

parameters for a BetaPert distribution (Vose, 2000),

represented as BetaPert(min, ml, max).

In the EU-funded project, the Monte Carlo simu-

lation model described in this paper was compared

with a Bayesian Belief Network approach (Jensen,

1996; Barker et al., 2000), which, quantitatively, gave

almost identical results (data not shown).

Below, the food pathway is defined first, followed

by a description of the models for the basic processes

partitioning and growth, which are the only basic

processes relevant in this particular model. They are

combined in a spreadsheet model for exposure assess-

ment.

2.1. The food pathway

The food pathway considered here starts at the end

of industrial processing. The product of concern is a

package of vegetable purée as produced by a Euro-

pean food manufacturer. This vegetable purée is made

in large batches which have a fixed weight, Wb= 300

kg. A batch is used to produce vegetable purée pack-

ages, with weight Wp= 500 g. Thus, the number of

packages produced from one batch is x =Wb/Wp = 600

packages (neglecting losses).

To predict growth of B. cereus further down the

food pathway, information is required on the storage

time and storage temperature. The vegetable purée

packages are stored at the factory and transported to

the retailers. Based on data from food manufacturers

(Litman, 2000), it is assumed that the packages are

stored and transported under strictly controlled time

temperature conditions until they reach the retailers

(that is 36 h at 4 jC; small deviations from these

constant conditions have only negligible effects (data

not shown)). Next the packages are stored at three

consecutive stages: (1) retail, (2) transport from retail

to home, and (3) domestic refrigerator. The probabil-

ity distributions of the storage characteristics are given

in Table 1 and are explained below. These distribu-

tions describe ‘per package’ variability. This implies

that it is assumed that packages originating from one

batch experience independent time temperature

regimes once they reach retail.

2.1.1. Retail

When the vegetable purée packages leave the

factory, the use-by-date (UBD) on the packages is

set at 21 days and is shown on the package. The food

manufacturer indicated that in shops 80% are sold

within 14 days and 20% between 14 and 21 days. All

supermarkets remove products that reach the use-by-

dates (that is after 21 days). In the model, the storage

time is implemented as 80% sold until 7 days before

UBD, the rest sold in the last week before UBD, both

with a uniform distribution.

Pierre (1996) presents French data for storage

temperature at retail, with mean 4 jC and standard

Table 1

Overview of food pathway parameters

Parameter Description Value

Wb batch weight 300 kg

Wp package weight 500 g

x number of packages

produced from

one batch

600

t0 storage time until retail 1.5 days

T0 storage temperature

until retail

4 jC

t1 storage time at retail 80%: Uniform (0, 12.5)

days

20%: 12.5

+Uniform(0, 7) days

T1 storage temperature

at retail

Normal(4, 2.17) jC

t2 transport time Gamma(5.24, 8.17) min

T2 storage temperature

at transport

BetaPert(4, 10, 25) jC

t3 storage time in domestic

refrigerator

Exponential((21� PD)/3)

� PD days

T3 storage temperature in

domestic refrigerator

see Table 2

Values are given either as constants or as probability distributions

expressing variability per package.

PD= ‘‘date of purchase’’= t0 + t1 + t2 = 1.5 days + time at retail + -

transport time.
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deviation 2.17. This is implemented as a normal N(4,

2.17) jC distribution.

2.1.2. Transport from retail to home

For transport time we use British data (Evans et al.,

1991). It is found that transport time from retail to

domestic refrigerator has a mean of 42.8 min, with

standard deviation 18.7. It is assumed that transport

time is Gamma distributed, because the Gamma dis-

tribution is generally applied to describe (complex)

waiting time distributions. Also, the Gamma distribu-

tion has no negative values and has a longer tail than

the normal distribution. This results in a Gamma(5.24,

8.17) distribution for transport time.

The temperature during transport is largely

unknown. Noting that these foods are generally not

refrigerated during transport by the consumer, that

there is an increase in temperature during transport to

home and that this increase depends on many uncer-

tain and variable factors, expert opinion from within

the EU-funded project (based on, e.g. Evans, 1998)

proposed a minimum 4 jC, most likely 10 jC and

maximum 25 jC for the effective temperature during

transport. Differences in product temperature history

profiles at various places throughout each packet of

the purée are an additional source of variability,

which are assumed to be included in this distribu-

tion.

2.1.3. Domestic refrigerator

Based on data from a French population survey

(Babayou, 1995), the food manufacturer of the

vegetable purée proposed that 5% of the packages

are consumed after the UBD. To describe the dis-

tribution of times that the products are kept in the

refrigerators, we assume an exponential distribution,

which describes the waiting time between two

events. It is assumed that consumer behaviour

regarding the storage time is influenced by the

UBD on the package. If PD is the day of purchase,

UBD-PD is the time between purchase and use-by-

date, that is the consumer storage time until the UBD

is reached. Knowing that the 95% quantile of the

exponential distribution lies at three times its mean,

the exponential distribution which gives 5% proba-

bility of a storage time exceeding the UBD has a

mean l=(UBD-PD)/3. The exponential distribution

then describes the storage time after PD. As PD is

variable, l is variable too. The resulting distribution

of storage times in the consumer refrigerator is

derived by Monte Carlo simulation. It has a mean

of 4.3 days and a median of 2.6 days. About 25% is

eaten within 1 day of purchase, 81% within a week

and 95% within 2 weeks. The mean date of con-

sumption lies 8.5 days before UBD.

Data from different European countries (Table 2)

allow us to construct distributions of domestic refrig-

erator temperatures. When a normal distribution is

fitted to all the data points given, this results in a

N(6.64, 2.35) jC distribution of refrigerator temper-

atures in different private homes in Europe. As

illustrated in Fig 1, the data seem to show some

geographical trends: In Northern countries refriger-

ator temperatures are usually lower than in Southern

countries. For comparison, we fitted normal distri-

butions to data of a South European country (Serge-

lidis et al., 1997) and data of a North European

country (Notermans et al., 1997) as well. For South-

ern Europe (two data points only) this resulted in

N(8.32, 2.49) jC, and for Northern Europe in

N(5.99, 1.83) jC.
In the exposure assessment we compare five differ-

ent ‘domestic refrigerator temperature’ scenarios. The

first three are those derived above, based on domestic

refrigerator data. As alternatives, we consider two

constant fixed refrigerator temperatures: 4 and 7 jC.

Table 2

Reported values of temperatures in domestic refrigerators

Temperature

(jC)
>5 >6 >7 >8 >9 >10 >11 Reference

UK 1 0.71 0.54 0.33 0.19 0.07 0.02 0.01 Evans

et al., 1991

UK 2 0.82 0.7 0.56 0.25 0.08 0.04 0.015 Johnson

et al., 1998

NL 0.7 0.3 0.03 0.02 Notermans

et al., 1997

France 1 0.7 0.41 AFF, 2000

France 2 0.52 0.18 Anonymous,

1999

France 3 0.8 0.06 Guingois,

2000

Greece 0.55 0.25 Sergelidis

et al., 1997

Values are the fraction of refrigerators with reported values higher

than the one given in the heading (in jC). For illustration see Fig 1.

UK=United Kingdom, NL=Netherlands.
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These are the required temperatures for some perish-

able foods at retail in some EU member states

(Anonymous, 1996).

2.2. Partitioning

In general, partitioning occurs when a large unit is

split up into several smaller units. In the present food

pathway this is the case when the large batch of

vegetable purée is split up in x = 600 packages. If it

is assumed that the batch is well mixed, that all x

packages formed from one batch have an equal weight

and that the B. cereus spores are randomly distributed

over the batch, random sampling leads to a number of

Ni spores as a sample from a Binomial (N, 1/x)

distribution for one package i. (Here, N is the total

number of spores in the purée batch.) We neglect both

spore clumping and the fact that the total number of

spores in all packages should equal the total number

in the batch, (ANi =N, see also Nauta, 2001; Nauta et

al., 2001).

The prevalence (P) may change from batch to

packages if, by chance, one or more packages from

a B. cereus-contaminated batch do not contain B.

cereus spores. The probability of this event is

PðNi ¼ 0Þ ¼ P0 ¼ ð1� 1=xÞN ð1Þ

The number of noncontaminated packages is of

particular relevance in the analysis, both because these

packages no longer pose a risk, and because non-

contaminated packages can be excluded from further

spreadsheet model calculations. Neglecting depend-

ence between packages, the number of noncontami-

nated packages, x0, has a Binomial (x, P0) distribution.

2.3. Growth

2.3.1. A primary and a secondary growth model

Predictive microbiology growth models should be

used in risk assessment with careful consideration

(Nauta, 2002). In general, predictive models produce

point estimates. When a confidence interval is given,

it is not clear whether this represents variability or

uncertainty or both. Also, many models neglect var-

iability between different strains of one species. This

Fig. 1. The distribution of mean temperatures in domestic refrigerators in different European countries. Normal distributions (lines) are fitted to

the data from Table 2 (markers). The solid line shows the ‘Europe’ temperature distribution, the fit through the mean of all data points. The

dashed lines show the fits through the data from Greece (upper dashed line) and the Netherlands (NL) (lower dashed line), used in the model as

temperature distributions for the ‘South’ and ‘North’ European scenarios.
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variability between strains can be relevant in the risk

assessment of any microbial species. This is partic-

ularly so for the distinct categories of psychrotrophic

and mesophilic strains of B. cereus, which, by defi-

nition, have very different growth characteristics. In

the exposure assessment we therefore analyse both

types of strains. As representatives we use strains

INRA AVZ421 (mesophilic) and INRA AVTZ415

(psychrotrophic), which were isolated from REPFED

made of vegetables (Choma et al., 2000). In this paper

they are referred to as MESO and PSYC. Valero et al.

(2000) studied the growth curves of these strains at

different temperatures in nutrient broth and calculated

the lag time (k) and maximum specific growth rate (l)
by fitting the Baranyi model to the data (Baranyi et al.,

1993). We assume that growth in our model food was

similar as in nutrient broth.

To model bacterial growth as a function of time

and temperature, we have applied primary and secon-

dary growth models (Whiting, 1995). As a primary

model, in which the growth curve is given as a

function of time, we use the lag exponential model

lnðNtÞ ¼ lnðN0Þ þ lðt � kÞ ð2Þ

with Nt the population size at time t (t>E), N0 the

population size at 0V tV k, l the specific growth rate

(h� 1) and k the lag phase duration (h).

This model is preferred to the Baranyi model

mainly for reasons of simplicity. A comparison of

both models showed that the variability between

strains and the uncertainty of the estimates are much

larger than the difference between the model predic-

tions (data not shown).

As a secondary growth model for the effect of

temperature we used the square root model (Ratkow-

sky et al., 1982), for both the specific growth rate and

the lag phase.

l ¼ bðT � Tmin;lÞ2 ð3Þ

k ¼ c=ðT � Tmin;kÞ2 ð4Þ

in which Tmin,l is the minimum growth temperature

with regards to l, Tmin,k is the minimum growth

temperature with regards to k, and b and c are scaling

parameters. Note that these minimum growth temper-

atures are obtained by extrapolation of the regression

line (Ratkowsky et al., 1982): after a transformation to

Ml and 1/Mk, i.e. Eqs. (3) and (4) are fitted to the

growth data of Valero et al. (2000) by linear regres-

sion, yielding estimates of the parameters b, Tmin,l, c,

and Tmin,k (see Table 3.) The uncertainty of the

parameter estimates has been interpreted as variability

between batches (or within strain variability) in the

Monte Carlo simulations.

This secondary growth model is based on condi-

tions with a constant temperature. However, in the

exposure assessment we have to deal with the fact that

the growth process continues while the temperature

changes. For this purpose we have to apply a temper-

ature function integration technique (Gill et al., 1991).

When the exponential growth phase has been entered,

the change in temperature may be incorporated by

changing the growth rate to the one that corresponds to

the new temperature. However, when the bacteria are

still in the lag phase, the course of events is unclear. By

the lack of a good alternative, we assume here that the

fractions of the model lag times are summed up with

changing temperature: If at storage step 1, with tem-

perature T1 and storage time t1, the lag phase duration

is k1 (Eq. (4)) with t1 < k1, then at step 2,

k2 ¼ c=ðT2 � Tmin;kÞ2ð1� t1=k1Þ

¼ ðc� t1ðT1 � Tmin;kÞ2Þ=ðT2 � Tmin;kÞ2 ð5Þ

and at step j

kj ¼ ðc�
Xj�1

i¼1

tiðTi � Tmin;kÞ2Þ=ðTj � Tmin;kÞ2 ð6Þ

Exponential growth starts after the remaining lag

(tj� kj > 0). Then, at the next step, kj+1 = 0.
Now, if we have an estimate of the initial popula-

tion size N0, we can predict the population size for

Table 3

Estimated values of the growth model parameters, using data from

growth experiments with B. cereus in nutrient broth over the

temperature range 5–30 jC (Valero et al., 2000)

Strain b (h jC2)� 1 Tmin,l (jC) c (h jC2) Tmin,k (jC)

MESO 0.0025 (0.0001) 9.15 (0.50) 905 (65) 8.44 (0.83)

PSYC 0.00076 (0.0001) 0.04 (1.14) 1600 (240) 3.30 (1.32)

Mean and standard deviation (between brackets) as given are used

in a normal distribution, which is assumed to describe within strain

variability and is implemented as variability per industrial batch.
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each strain at each time temperature (t, T) combination

with the model:

if tj < kj lnðNjÞ ¼ lnðNj�1Þ

else lnðNjÞ ¼ lnðNj�1Þ þ bðTj � Tmin;lÞ2ðtj � kjÞ
ð7Þ

with b, c, Tmin,l and Tmin,k variable per batch and kj as
defined above (Eq. (6)).

2.3.2. Spoilage and maximum population density

As microbial spoilage of the food product will

lower the probability of consumption of a food

product, it is important to incorporate spoilage (at

the point that the consumer removes a packet of purée

from the fridge) in the exposure assessment.

First, B. cereus itself may reach a level that implies

spoilage. In the lag-exponential growth model (Eq.

(2)), a stationary phase where the maximum popula-

tion density (MPD) is reached is not included. Obtain-

ing such a level may be correlated with spoilage.

Therefore, based on expert opinion from within the

EU-funded project, the MPD is included in the model

as a threshold value. It is implemented as a per-batch

variable with a BetaPert(6, 7.5, 8.5)log cfu/g distri-

bution.

To our knowledge, a spoilage model for general

spoilage flora in REPFEDs based on vegetables is not

available. Spoilage data that are available (e.g. Carlin

et al., 2000b) could not be used to derive such a

model. As an alternative, we use the main character-

istic of the square root model for the growth rate

(Ratkowsky et al., 1982) to express the relative

importance of time and temperature in a ‘spoilage

model’, a very simple version of a time temperature

integrator (Taoukis and Labuza, 1989; Taoukis et al.,

1999).

Assuming that the minimum growth temperature is

0 jC, the square root of the growth rate is linearly

related to the temperature. Neglecting lag phase, the

log of the concentration of the spoilage organism will

be linearly related to time� temperature2, expressed

here as tTT. For changing temperature over time, tTT

stands for the sum (or integral) of tTT for all time

intervals. The available spoilage data show that spoil-

age will occur with high probability after 5 days at 20

jC or 20 days at 10 jC, that is when tTT= 2000. It

will occur with low probability after 10 days at 10 jC,
that is when tTT = 1000. These two values are there-

fore used to explore the effect of the potential occur-

rence of spoilage of the vegetable purée.

2.3.3. Non-germination

A complicating factor for a spore-forming patho-

gen like B. cereus is that it occurs in different states:

spores and vegetative cells. Next to growth and

inactivation, population dynamics of B. cereus is

complicated by germination and sporulation. Of these,

(non-) germination is particularly relevant in this

study, because sporulation is not likely to occur in

an unspoiled purée. In the exposure model we assume

that the packages contain spores only because the

purée has been pasteurised in the factory. After

storage the packages may contain both spores and

vegetative cells. These cell types may pose different

risks to the consumer because survival and toxin

production in the intestinal tract may be different.

Spore germination is assumed to take place when

the minimum growth temperature as defined for the

lag phase is exceeded. The growth phase starts imme-

diately after germination, without a germination lag. If

germination occurs, there is still a fraction of spores

that does not germinate. This fraction is expressed as

the probability that a spore does not germinate (Psng),

which is assumed to be variable per package. Based

on various data sources (e.g. Pol et al., 2001) and

expert opinion (R. Moezelaar, personal communica-

tion), minimum, most likely and maximum values for

Psng are 0%, 0.1% and 30%, implemented in a

BetaPert distribution.

In the growth model as outlined above, it is

assumed that N is the sum of spores and vegetative

cells. Although it is actually only the vegetative cells

that multiply, so that a growth model considering

vegetative cells only seems more realistic, this

assumption has been made because the models are

derived from and validated with experimental data on

‘colony forming units’, the sum of (viable) spores and

cells.

2.4. The exposure model

The exposure model combines the food pathway

characteristics with the basic models for partitioning

and growth. It has been built as a spreadsheet model in
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Microsoft Excel with add on @Risk 4.0.5 (Palisade,

Newfield). An overview of the model parameters and

the distributions used is given in Tables 1–4. In one

iteration of the Monte Carlo model, 100 packages of

vegetable purée containing B. cereus originating from

one batch are simulated. Per simulation 5000 iterations

are run representing 5000 independent industrial

batches and 500,000 packages. By doing so, the

variability between batches and the variability between

packages from one batch can be compared.

The input of the model is derived from the output of

the model of the industrial process (Nauta, 2001). It

implies that all industrial batches of vegetable purée

are contaminated with B. cereus. The level of contam-

ination is variable per batch. It is assumed that a batch

is contaminated with one B. cereus strain only. As the

frequency of contamination with either psychrotrophic

or mesophilic strains (or both) is unknown, these two

types are modelled separately. For the MESO the load

in the industrial batch at the end of processing, L0,MESO

(log cfu/g), has a normal distribution, N(0, 0.67), and

for PSYC, L0,PSYC, it follows N(� 2.4, 0.67). The

difference between the two is a consequence of a

different heat resistance of the spores (Fernandez et

al., 1999; Nauta, 2001). The initial number of spores

per batch, N0,b = 10L0Wb spores, where Wb is the

weight of the batch.

These N0,b spores are randomly distributed over the

packages, modelled as a partitioning process. One

hundred contaminated packages are followed in the

simulation and the log of the number of viable

organisms per package is computed. Growth is mod-

elled as explained above, for each package independ-

ently. For all packages the model keeps track of the

storage times and temperatures, to compare the pre-

dicted growth with potential spoilage and reaching the

MPD. Also, storage time is compared with the time

until the use-by-date is passed.

As a threshold level for B. cereus contamination of

the product, we apply 105 cfu/g. This level is gen-

erally considered as the minimum level of concern to

the consumer (Notermans et al., 1997; Granum and

Baird-Parker, 2000). As a critical level we define a

level >105 cfu/g, given that the MPD is not reached, to

incorporate the effect of spoilage by B. cereus. Note,

however, that this threshold level is not considered as

a threshold for illness as in the context of a dose–

response model. It is used as an alternative since the

development of dose–response models for toxino-

genic spore-forming microorganisms is complex and

still in its infancy.

3. Results and discussion

3.1. Exposure assessment

The exposure modelling results are given in Table

5. It shows that PSYC reaches high levels most

frequently. Due to a difference in sensitivity to

heating, the initial B. cereus level is considerably

lower for this strain, but its ability to grow at low

temperatures allows an increase to critical levels. As

illustrated in Fig. 2, the mean level of PSYC in the

packages taken from the domestic refrigerator is still

lower than that of MESO. However, the variability in

growth in packages from one batch is much larger.

This leads to a higher probability of passing the

threshold level: for the average European domestic

refrigerator temperatures, 3.3% of the vegetable

purée packages are predicted to hold more than 105

cfu/g of PSYC B. cereus. (Note that this is prior to a

cooking process.) If corrected for MPD and spoilage,

Table 4

Basic model equations and input values

Parameter Description Value

L0, MESO Initial spore

Load MESO

Normal(0, 0.67)log spore/gb

L0, PSYC Initial spore

Load PSYC

Normal(� 2.4, 0.67)log

spore/gb

N0,b Spores per batch 10L0Wb spores
b

Ni,0 Initial number of

Spores per package i

Binomial(N0,b, 1/x)
p

P0 Prevalence of packages

Without B. cereus

Spores after partitioning

Binomial

(x, (1�1/x)N0,b)
b

Ni,j Cfu per package i after

Food pathway step j

see Eq. (7) and

Tables 1 and 3p

MPD Maximum population

Density

BetaPert(6, 7.5, 8.5) b

Psng Probability of

Nongermination

Of a spore

BetaPert(0, 0.001, 0.3) p

Si Spores left in the package

At the end point

if Tmin,j< Tmin,k at steps j:

Ni,0, otherwise: Psng Ni,0
p

Variability distributions are sampled per industrial batch (b) or per

package (p).
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the probability of passing the critical level lies

between 0.6% and 1.5%. When the use-by-date is

maintained this is 1.2%.

Comparison of the different (distributions of) domes

tic refrigerator temperatures shows that, as expected,

the highest levels are predicted for the highest temper-

Fig. 2. The change in the mean of the log concentration of B. cereus during the retail and consumer phase, for the psychrotrophic (PSYC) and

mesophilic (MESO) strain, and for the five domestic refrigerator temperature scenarios. The diamond represents the mean initial concentration,

the end of the line the mean log concentration at the end point.

Table 5

Results of the exposure assessment for the psychrotrophic and mesophilic B. cereus strains and five domestic refrigerator temperature scenarios

Strain PSYC MESO

Temperature scenario South Europe North 7 jC 4 jC South Europe North 7 jC 4 jC

Mean log Ni(log cfu/g) � 0.24 � 0.96 � 1.26 � 1.12 � 1.72 0.10 0.02 0 0 0

S.D. between batches 1.04 0.89 0.82 0.93 0.65 0.68 0.67 0.67 0.67 0.67

S.D. within batches 3.25 2.31 1.83 1.76 1.25 0.54 0.16 0.06 0.04 0.07

Mean log Si (log spores/g) � 2.64 � 2.64 � 2.64 � 2.64 � 2.64 � 1.2 � 1.1 � 1.1 � 1.1 � 1.1

B. cereus cfu in package 73% 73% 73% 73% 73% 100% 100% 100% 100% 100%

B. cereus spores in package 18% 19% 18% 18% 19% 94% 94% 94% 94% 94%

B. cereus growth 40% 31% 27% 32% 16% 8% 2% 1% 0% 0%

>105 cfu/g 6.3% 3.3% 2.1% 2.1% 0.9% 0.4% 0.1% 0.0% 0.0% 0.0%

Critical 2.4% 1.5% 1.1% 1.2% 0.5% 0.2% 0.0% 0.0% 0.0% 0.0%

Critical, non-UBD 2.0% 1.2% 0.8% 0.8% 0.5% 0.2% 0.0% 0.0% 0.0% 0.0%

Critical, non-spoiled + 2.4% 1.5% 1.1% 1.2% 0.5% 0.1% 0.0% 0.0% 0.0% 0.0%

Critical, non-spoiled 0.8% 0.6% 0.6% 0.7% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0%

Exposure is measured at the moment that the consumer takes the package of vegetable purée from the refrigerator. Mean values and standard

deviations (S.D.) for Ni and Si are the means of the (10 based) logs of the numbers found in packages contaminated with B. cereus (expressed

per gram). Percentages are mean percentage of packages containing B. cereus; containing B. cereus spores; in which B. cereus has grown (i.e.

the number of viable organisms per package has increased); passing the threshold level of 105 cfu/g; passing the critical level, that is >105 cfu/g

given that the MPD is not reached; passing the critical level and not passing the UBD; passing the critical level and not passing tTT= 2000;

passing the critical level and not passing tTT= 1000. (Note that 0.0% does not imply a zero risk, only that in less then 0.05% of the simulations

the given criterion is met).
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atures, i.e. the ‘South’ European scenario. For PSYC

the probability of passing the threshold level 105 cfu/g

rises to 6.3%, and when corrected for reaching the

MPD and spoilage, the probability of passing a critical

level is also larger. For other domestic refrigerator

temperatures these probabilities are lower. However,

even for the fixed 4 jC scenario, there is a 0.5%

probability of passing the critical level before the

UBD is passed. For MESO the level may only be too

high for the ‘South’ European temperatures. For the

others the probability of growth and the extent of

growth are too low to reach critical levels. Note,

however, that 0.0% in Table 5 does not imply a zero

risk, only that in less then 0.05% of the simulations the

given criterion is met.

The percentage of contaminated packages is 100%

for MESO, but about 73% for PSYC. This is due to

the higher initial levels of spores of MESO. As the

MESO spores only rarely germinate in the purée, the

final spore load is larger too. In fact, it may be that the

spores are the actual hazard rather than the vegetative

cells: since if the purée is heated before consumption

this may inactivate vegetative cells, but not spores. As

a consequence, mesophilic strains may pose a higher

risk than psychrotrophic strains. Unfortunately, we

were not able to extend the model to include a heating

step by consumers and the next steps, consumption

and dose– response. Required data on consumer

behaviour and adequate models are not available.

The correlation between input and output concen-

trations are illustrated in Figs. 3 and 4. Here the mean

of the logs of the concentration of the 100 simulated

positive packages after domestic storage at the average

‘European’ temperatures is plotted against the (varia-

ble) initial (log of the) concentration of B. cereus in the

industrial batches. It shows a strong correlation for

MESO, for which growth is rare. For PSYC there is

only little correlation: growth is frequent and the extent

of growth is independent of the input. Similarly, the

correlation between input and the percentage of critical

packages is studied. This percentage of critical pack-

ages depends not only on the mean of, but also on the

variability between, the packages originating from one

batch. It appears that there is little correlation between

the two, both for MESO and PSYC, with correlation

coefficients r2 < 0.01 and r2 = 0.16, respectively (data

not shown). The correlation for the MESO packages is

low because growth occurs only in a very small

Fig. 3. Correlation between the concentration of the mesophilic B.

cereus strain at the end of industrial processing and the mean of the

log concentration in 100 packages at the end point, for 5000

simulated industrial batches, applying the ‘European’ domestic

refrigerator temperature distribution. The value of the correlation

coefficient r2 = 0.998.

Fig. 4. Correlation between the concentration of the psychrotrophic

B. cereus strain at the end of industrial processing and the mean of

the log concentration in 100 packages at the end point, for 5000

simulated industrial batches, applying the ‘European’ domestic

refrigerator temperature distribution. The value of the correlation

coefficient r2 = 0.23.
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fraction of the packages. Overall, this suggests that the

level of B. cereus at the end of industrial processing is

a poor predictor for health risks.

3.2. Growth model

The major part of the model is on B. cereus growth.

Ideally, for exposure assessment growth has to be

predicted for all relevant storage conditions and for

all B. cereus strains that might be present in the food

product. Models that are publicly available (Zwietering

et al., 1996; USDA, 1998) do not include the variability

between different strains or types of B. cereus.A ‘worst

case’ model, although helpful to identify important

steps in a food process, is insufficient for quantitative

risk assessment, as it may wrongly suggest to be ‘fail

safe’, and does not give an indication of the probability

of ending up with an undesired situation. In this study

we therefore used growth data from a psychrotrophic

and a mesophilic strain in nutrient broth (Valero et al.,

2000). Although this data set is only small, it is

sufficient to illustrate how such growth data may be

used in an exposure assessment. As the strains studied

were isolated from a REPFED containing vegetables,

this study was particularly applicable. Next, we had

data on the inactivation characteristics of the same

strains available, which allowed us to make an addi-

tional industrial process model (Nauta, 2001), and

assess the differences in initial loads between PSYC

and MESO. However, it should be realised that the

growth data are experimental data of growth on a

laboratory medium for a few constant temperatures.

In this study they are applied to predict growth in real

food, at varying temperatures, for a variety of strains.

Lag time prediction is complex as lag time duration

may strongly depend on the initial physiological state

of the cells and on the population size (Baranyi and

Roberts, 1995; Baranyi, 1998). The ‘reciprocal square

root model’ that we used is based on the assumption

that the lag phase is inversely related to the specific

growth rate (Smith, 1985; Baranyi and Roberts, 1994).

It has been applied, for example, by Zwietering et al.

(1994) and Koutsoumanis and Nychas (2000), and has

been tested positively for Lactobacillus curvatus

(Wijtzes et al., 1995).

The fact that the model holds two different values

for minimum growth temperature (Tmin,k and Tmin,l)

may seem peculiar, as one might expect that Tmin,l

equals Tmin,k. It seems, however, that these minimum

growth temperatures are different, especially for

PSYC. A reason for this may be the fact that germina-

tion (causing part of the lag) and growth are different

processes (see below). Alternatively, it might be that

the uncertainty about the limited data set is too large. It

appeared that, if the two ‘minimum growth temper-

ature’ parameters are set equal in the growth model

(Eqs. (2)–(4)), the resulting model could not be fitted

to the available data to an acceptable level. In the

current model, the temperature should exceed the

largest of the two minima to allow growth, so the

largest of the two is to be interpreted as the actual

minimum growth temperature.

3.3. Spore germination

The different states of B. cereus, as spores or

vegetative cells, are a complicating factor. Usually

growth experiments with B. cereus (as used for devel-

oping growth models) start with (ungerminated) spores

and measure the total viable concentrations of vegeta-

tive cells and spores (cfu/ml) as a function of time.

However, strictly speaking, growth is a combination of

germination (from spore to vegetative cell) and growth

(from vegetative cell to vegetative cells). For the

prediction of growth alone, this need not be a problem.

However, if a growth process is followed by inactiva-

tion, (for example if a cooked chilled food product is

heated before consumption) we need to predict the

number of spores that we end up with. These spores can

be the product of both ‘nongermination’ and sporula-

tion. Although several studies provide data on inacti-

vation and germination of B. cereus spores (e.g.

Johnson et al., 1982; Dufrenne et al., 1995; Pol et al.,

2001), quantitative models to predict the number of

spores after growth are not available to our knowledge.

Therefore, in this study the spore load after growth is

expressed as a simple nongermination fraction Psng,

estimated by expert opinion, based on these data.

3.4. Spoilage

Spoilage is another complicating factor in a risk

assessment of foods because conditions leading to

critical levels of the hazard will usually favour spoil-

age, which will lower the probability of consumption.

For a proper risk assessment, we therefore need a
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spoilage model that predicts the probability of spoil-

age of a given product at the point where it is

removed from the domestic refrigerator, given its

time temperature history, and the initial contamination

by spoilage organisms. For some specific food prod-

ucts with specific distribution chains, such models are

developed to assess shelf life and to optimise product

quality (Taoukis and Labuza, 1989; Taoukis et al.,

1999; Giannakourou et al., 2001). However, for the

food product of interest here, a spoilage model was

not available. Ideally, ‘spoilage’ is expressed in terms

of probability of consumer acceptance as a function

of time and temperature: not all consumers will react

identically when a product ‘smells badly’ or is

‘visibly spoiled’. In the end, consumption is critical

for exposure.

In the current model we evaluate microbial spoilage

by regarding the maximum population density (MPD)

of B. cereus and the tTT-profile. When the MPD is

reached, the concentration of B. cereus is high, between

6 and 8.5 log cfu/g. These levels need not necessarily

imply spoilage of products by B. cereus, but as the

conditions for which the MPD is reached will also

favour spoilage, reaching MPD will be strongly asso-

ciated with spoilage. As an alternative, we also look at

the tTT profile as an indicator of spoilage. The thresh-

old tTT= 2000 is regarded as a ‘high probability of

spoilage’ value, and tTT= 1000 is regarded as a ‘low

probability of spoilage’ value. This simple model is

based on some simple arguments. It aims to illustrate

how a spoilage model can be used in a risk assessment,

and gives a clue about the potential impact of spoilage.

As an example, the results of PSYC ‘South’ show that

large probability of packages with concentrations of B.

cereus above the threshold level (6.3%), is associated

with a high probability of spoilage (8.7% tTT>1000),

and a relatively high probability of reaching a critical

level without spoilage (0.8%).

4. Conclusions

This study illustrates how the retail and consumer

phase of the food pathway can be modelled by linking

currently available predictivemodels and data. It shows

that improved growth models are required for QMRA

purposes. The models used have not been validated for

the conditions to which they are applied here, and hold

assumptions that are disputable, both regarding secon-

dary growth modelling, germination and spoilage.

Nevertheless, with these models and data, we have

been able to include several sources of variability and

to predict the probability and the extent of growth of B.

cereus in a vegetable product after industrial process-

ing, as needed for QMRA.

In the assessment, five domestic refrigerator temper-

ature scenarios are compared. In South European

countries temperatures are higher, and, as a conse-

quence, predicted levels of B. cereus are higher. It

should be stressed that this finding is based on limited

data, so that it is only preliminary. Also, the assessment

shows that a constant domestic refrigerator temperature

of 4 jC may not be sufficient to prevent B. cereus to

grow to a critical level, even if the UBD is respected:

higher temperatures during retail and transport may

induce growth and according to the model, subsequent

growth below 4 jC is not always excluded.

There is quite some uncertainty attending the

model predictions. It is for example uncertain to what

extent the models used are representative for variable

(psychrotrophic and mesophilic) strains and products.

Additionally, due to a lack of data, some assumptions

and parameter estimates had to be based on estimates

of experts. Next, time and resources did not allow

validation of the models used. This implies that the

value of the quantitative predictions should be

handled with reservation. Nonetheless, they give a

good indication of what should be expected, based on

present knowledge in the fields of food microbiology

and mathematical modelling.

It appears that the B. cereus level at the end of

industrial processing is a bad predictor for high levels

at the moment the package is taken from the refrig-

erator by the consumer. Although the initial level is

strongly correlated with the mean level of packages

from one batch for the mesophilic strain (see Fig. 3),

these are generally low levels. For psychrotrophic

strains that reach higher levels, this correlation is

small (see Fig. 4). For both strain types, initial levels

are hardly correlated with probability of reaching a

critical level in a package.

The effect of the post-industrial part of the food

pathway is therefore significant for the level of expo-

sure. Monitoring for B. cereus at the end of industrial

processing, or withdrawing the most contaminated

packages at this point, will have little impact on the
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final exposure of the population. Next to intervention

aiming at the ingredients added to the purée at indus-

trial processing to reduce the spore load (Nauta, 2001),

controlling refrigerator temperatures will be a better

strategy to decrease the level of exposure to consumers.

This strategy should mainly be aimed at the domestic

refrigerators, where temperature abuse will be most

frequent: unlike temperatures in a professional setting,

it cannot be controlled by legislation.
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