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Abstract

This paper discusses some of the developments and problems in the field of quantitative microbial risk assessment,

especially exposure assessment and probabilistic risk assessment models. To illustrate some of the topics, an initial risk

assessment was presented, in which predictive microbiology and survey data were combined with probabilistic modelling to

simulate the level of Staphylococcus aureus in unripened cheese made from raw milk at the time of consumption. Due to limited

data and absence of dose–response models, a complete risk assessment was not possible. Instead, the final level of bacteria was

used as a proxy for the potential enterotoxin level, and thus the potential for causing illness. The assessment endpoint selected

for evaluation was the probability that a cheese contained at least 6 log cfu S. aureus g�1 at the time of consumption; the

probability of an unsatisfactory cheese, Puc. The initial level of S. aureus, followed by storage temperature had the largest

influence on Puc at the two pH-values investigated. Puc decreased with decreasing pH and was up to a factor of 30 lower in low

pH cheeses due to a slower growth rate. Of the model assumptions examined, i.e. the proportion of enterotoxigenic strains, the

level of S. aureus in non-detect cheeses, the temperature limit for toxin production, and the magnitude and variability of the

threshold for an unsatisfactory cheese, it was the latter that had the greatest impact on Puc. The uncertainty introduced by this

assumption was in most cases less than a factor of 36, the same order of magnitude as the maximum variability due to pH.

Several data gaps were identified and suggestions were made to improve the initial risk assessment, which is valid only to the

extent that the limited data reflected the true conditions and that the assumptions made were valid. Despite the limitations, a

quantitative approach was useful to gain insights and to evaluate several factors that influence the potential risk and to make

some inferences with relevance to risk management. For instance, the possible effect of using starter cultures in the cheese

making process to improve the safety of these products.
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1. Introduction

Risk analysis within the field of food safety is a

strongly evolving activity and during recent years

several meetings have addressed the details of risk

management (FAO/WHO, 1997), risk assessment
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(CAC, 1999) and risk communication (FAO/WHO,

1998). Since the latest Food Micro meeting 1999 in

Veldhoven, which hosted a session devoted to risk

assessment the WHO/FAO and CODEX have

launched several risk assessments for different patho-

gen–food combinations, which have been discussed

in a series of expert consultations (e.g. FAO/WHO,

2000, in press). The purpose of developing these

assessments has been to address specific risk manage-

ment questions and to improve and disseminate the

methodology for risk assessment. Another important

objective of these activities was to develop guidelines

and good practices for the conduct of the different

steps involved in a quantitative risk assessment, e.g.

hazard characterisation and dose–response (FAO/

WHO, in preparation(a)), and exposure assessment

(FAO/WHO, in preparation(b)). It can be envisaged

that when these documents have been finalised most

food safety issues will be addressed by development

of quantitative risk assessment models at the interna-

tional level. The models will have to be adopted to

reflect the conditions at the national level. In this

respect it may be anticipated that the exposure assess-

ment will be of particular importance due to national

differences in how food is produced and distributed,

in the occurrence of specific microorganisms, and in

the way food is prepared and consumed.

Risk is defined as the probability and the conse-

quences of a hazard to occur. A risk in the context of

food safety is the probability and the consequences of

adverse health effects following the ingestion of food.

The separation of risk into two components is useful,

since risk may be managed both by actions to reduce

the probability and the consequences of the adverse

event. The second component is often overlooked in

microbial risk assessments, although it may implicitly

be considered in the selection of the biological end-

point in the dose–response relationship, e.g. diar-

rhoea, morbidity, mortality. However, to be able to

compare the public health risk and benefits of differ-

ent management options, it would be desirable to be

able to integrate different biological endpoints in one

public health measure. One such measure is Disability

Adjusted Life Years (DALY), which is the sum of

years of life lost by premature mortality and years

lived with disability, weighted with a factor between 0

and 1 for the severity of illness (Murray, 1996). For

instance, Havelaar et al. (2000a,b) reported that the

more infrequent consequences such as gastroenteritis

related mortality (310 DALY) and Guillain–Barre

syndrome (340 DALY), contributed as much as fre-

quent acute gastroenteritis (440 DALY) to the total

health burden of Campylobacter associated illness in

the Dutch population per year (1440 DALY).

Risk analysis consists of three partly overlapping

components; risk management, risk assessment, and

risk communication, and can be described as a frame-

work to analyse and manage any activity that may

have negative consequences. In the context of food

safety, it is a tool, which in a formalised, systematic

and transparent way, enables responsible authorities

and international organisations to understand and if

necessary evaluate options to reduce a health risk.

Risk assessment is a science-based process in which

questions that have been formulated during the risk

evaluation step of the risk management process are

addressed to develop an understanding of the problem

and to come up with risk estimates. Reviews of the

four steps in a formal risk assessment were presented

at the latest Food Micro meeting in Veldhoven 1999;

hazard identification and exposure assessment (Lam-

merding and Fazil, 2000) and hazard characterisation

and risk characterisation (Buchanan et al., 2000),

respectively. In short, in the exposure assessment,

the likelihood that an individual or a population will

be exposed to a microbial hazard and the likely

numbers ingested are estimated (Lammerding and

Fazil, 2000). In the hazard identification step, the

relevant hazards, i.e. microorganisms and/or their

toxin(s), and their main sources together with the

relevant context are described. The likelihood of a

response of any individual to an exposure to a

foodborne pathogen is dependent on the integration

of host, pathogen and food matrix effects which are

described in the hazard characterisation step

(Buchanan et al., 2000). In the final risk character-

isation step, the exposure assessment serves as the

input to the dose–response model selected from the

hazard characterisation, in order to evaluate the risk in

relation to the risk management question. An impor-

tant part of this step is to estimate the uncertainty of

the estimates and the impact of critical assumptions

made in the assessment (Buchanan et al., 2000).

The purpose of the present work is to discuss some

of the developments and problems in the field of

quantitative microbial risk assessment, especially as
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regards exposure assessment and probabilistic risk

assessment models. As an illustration of some of the

topics, an initial risk assessment of Staphylococcus

aureus in unripened cheese made from raw milk is

presented.

2. Selected topics in probabilistic exposure

assessment

The Veldhoven reviews (Buchanan et al., 2000;

Lammerding and Fazil, 2000) discussed the advan-

tages of probabilistic modelling for addressing varia-

bility and uncertainty of parameters in a risk

assessment model. The majority of risk assessments

use a probabilistic approach but it may be considered

good practice to begin with a more simple determin-

istic model to explore if probabilistic models are

necessary (EPA, 1997; Zwietering and van Gerwen,

2000). Probabilistic techniques, such as Monte Carlo

analysis (Vose, 2000), have been demonstrated to be

useful tools for analysing the variability and uncer-

tainty associated with model parameters in quantita-

tive risk assessments. Uncertainty, which refers to a

lack of knowledge, can be reduced by further study

and includes (EPA, 1997): (1) Scenario uncertainty

(descriptive errors, aggregation errors, errors in pro-

fessional judgement, incomplete analysis); (2) model

uncertainty (uncertainty due to necessary simplifica-

tion of real-world processes, mis-specification of the

model structure, model misuse, use of inappropriate

surrogate variables); and (3) parameter uncertainty

(measurement errors, sampling errors, systematic

errors). Variability refers to the natural variation in

the system under study, and further studies can lead to

a better characterisation of variability, but a change of

the system, e.g. changing the food production system,

is needed to reduce it.

In a probabilistic model, each uncertain model

input parameter is described by probability distribu-

tions rather than by point estimates. There are a

number of techniques to calculate the outcome dis-

tribution such as the method of moments, exact

algebraic solutions and Monte Carlo simulation (Vose,

2000). Using the Monte Carlo approach, the model is

calculated a number of times to simulate the outcome

distribution. Each time (iteration) the model is calcu-

lated values for the model parameters are sampled

from the probability distribution defined for the

parameters, and represent, in principle, a scenario or

event that may occur. The input distributions are

sampled at random using the Monte Carlo or more

often the Latin Hypercube, LHS, sampling methods.

LHS is a form of stratified sampling method often

regarded superior to the Monte Carlo method since it

reproduces the input distributions in fewer iterations

(Vose, 2000). However, LHS may place less emphasis

on sampling from the tails of the input distributions

and may be hard to implement in hierarchical model

structures consisting of several sub-models (Jordan et

al., 1999). The simulation result is a frequency dis-

tribution of the output of interest which provide not

only extreme values but also the most likely outcome

based on the combinations of input probability values

that could occur. The utility of probabilistic techni-

ques is dependent on the availability of adequate data,

credible assumptions, and application of good scien-

tific practices in terms of clarity, transparency, repro-

ducibility, and sound use of methods (EPA, 1997). In

the field of quantitative microbial risk assessment, the

approaches to these issues and sound use of methods

are currently being developed. In this section, some

considerations related to the scope and development

of exposure assessments of food-borne microbial

hazards will be addressed. The present description is

by necessity sequential and ordered linearly along a

time axis, in reality though the risk assessment proc-

ess is dynamic and iterative in nature and many of the

steps may be iterated and/or carried out in parallel

(Anonymous, 2000).

2.1. The purpose of the risk assessment

The purpose and objective of an assessment should

guide its conduct (Morgan and Henrion, 1990) and, in

order to clearly and concisely define these, a close

interaction between managers and assessors is neces-

sary during the initial phases. In some instances it may

be necessary to limit the scope to be able to address

the questions by making them more specific or,

alternatively, to develop more than one assessment.

The exposure assessment should be made as simple as

possible while still including the important sources of

risk.

Based on the outcome of this initial phase deci-

sions regarding the approaches to modelling, e.g.
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probabilistic or deterministic, dynamic or static,

empirical or mechanistic, and the structure of the

assessment model (which pathways, single or multiple

models) can be made. Dynamic models describe a

process over time (or space) and are often constructed

in terms of differential or difference equations, which

describe the rate of change. In contrast, static models

consider the probability of an event happening during

a given time period or at a point in time (or location).

Most QMRA’s have been driven by static risk man-

agement questions and the estimation of risk can

usually be termed static, although they may contain

elements of dynamic modelling as well, e.g. model-

ling of microbial growth.

2.2. Monte Carlo simulation and the separation of

uncertainty and variability

The basic goal of a Monte Carlo analysis is to

quantitatively characterise the uncertainty and varia-

bility in terms of risk, and to identify and understand

the relative contribution of the key sources of this

uncertainty and variability. There may be instances

where a probabilistic Monte Carlo analysis for various

reasons is not an option. For instance, when it is not

expected to improve a risk assessment, when the risk

is well below concern, when neither time nor resour-

ces are available, when the problem can be managed

at a low cost anyway, or when rare events have a large

impact on the risk (EPA, 1997). In many other

situations, probabilistic Monte Carlo analysis may

be useful, e.g. when conservative point estimates fall

above levels of concern, in order to rank exposure

sources, exposure pathways or contaminants, or when

costs are high or the consequences of not managing

the problem are unacceptable. In practice, a tiered

approach beginning with a simple screening model

and progressing to more sophisticated and realistic

models may often be the preferred approach (EPA,

1997).

The separation of variability and uncertainty of

parameters in QMRA models, second-order models,

have up to now rarely been made, a reflection of the

fact that this can be a daunting task. However,

neglecting the difference between them may lead to

improper risk estimates (Nauta, 2000) and/or incom-

plete understanding of the results (Vose, 2000). Also,

if the distinction is not clear to the analyst, a

variability distribution may incorrectly be used as

if it were an uncertainty distribution (Vose, 2000).

The explicit separation of these two allows decision-

makers to understand how model outputs might

improve if uncertainty is reduced. There are essen-

tially two methods for producing second-order mod-

els; the first calculates variability and simulates the

uncertainty, and the second method simulates the

variability, selecting for each simulation a random

sample from distributions for uncertain parameters

(Vose, 2000).

2.3. The pathways and steps included in the exposure

assessment

The relevant stages of the farm-to-fork chain, the

key processes and the level of detail necessary to

estimate the probability and the likely levels of

exposures are determined with reference to the

assessment end point as defined by the risk manage-

ment question. It may not be possible or even

necessary to model the whole farm-to-fork pathway

or every conceivable event in a system that may have

an impact on the exposure. Depending on the empha-

sis and the perspective of the risk assessment, differ-

ent approaches have been used in developing the

overall model. For instance, the Event Tree describes

a scenario from the initiating event to a defined

endpoint of the assessment (Roberts et al., 1995).

This approach serves to describe the high-risk path-

ways that lead to contamination and subsequent dis-

ease and may identify risk variables in need of further

data or modelling. In contrast to the Event Tree, the

Fault Tree begins with the occurrence of a hazard and

from there describes the events that must have

occurred for the hazard to be present (Roberts et al.,

1995). This approach can provide a framework to

analyse the likelihood of an event by determining the

complete set of underlying conditions or events that

allow the given event to occur (Jaykus, 1996). Addi-

tional approaches to modelling used in assessments

of microbial food hazards include a Dynamic Flow

Tree model (Marks et al., 1998) and a Process Risk

Model (Cassin et al., 1998). The former emphasises

the dynamic nature of bacterial growth and incorpo-

rates predictive microbiology using statistical analy-

sis of data, whereas the latter focuses on the integra-

tion of predictive microbiology and scenario analysis
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to provide an assessment of the hygienic character-

istics of a manufacturing process. Variations on these

themes exist. More elaborate and sophisticated clas-

sifications and distinctions between approaches and

types of models than in the present work have been

proposed (see e.g. Hurd and Kaneene, 1993). The

broad types of models described here operate in only

one direction, which does not make the inclusion of

feedback mechanisms possible. This may be a limit-

ing factor when modelling complex biological sys-

tems. Alternative models may include dynamic

models based on differential equations, or Markov

chain, and random-walk models or so-called neural

networks (Skjerve, 1999). The use of alternative

structural and mathematical models, together with

various types of model errors can represent important

sources of uncertainty. It should be noticed that

methods for dealing with uncertainty associated with

the choice of the structure of risk models are lacking

(Morgan and Henrion, 1990). Preliminary analysis

using alternative structural models may be examined

to determine if structural differences have important

effects on the outputs of the model. However, the

scenario or event being modelled must be kept in

mind to ensure that the model provide answers to the

questions posed, that an event that could physically

occur in reality is described, and that comparable data

which can be combined in the model are used (Vose,

2000).

Since the exposure model itself is a tool to

understand the problem under study and to identify

knowledge gaps, it is desirable that it is developed

independently from the consideration of the avail-

ability of data. This may be difficult in practice,

since the choice of model may be very dependent on

the data that is available (Nauta, 2001). The data to

feed into probabilistic risk assessment models need

to be compiled and critically evaluated in terms of

sampling and analytical errors. The lack of repre-

sentative data is a major threat to the accuracy of a

variability analysis. For instance, data from a survey

may have to be weighted to correct for biases in the

sampling, e.g. based on the annual production in

different regions (e.g. Ebel and Schlosser, 2000).

Further, data from different sources that were col-

lected over different temporal or spatial scales may

be the only data available and the direct combination

of these may be difficult. In addition, the estimates

may be biased due to differences in the methodology

used, e.g. in terms of sensitivity and specificity. If

data on these are collected or can be calculated based

on the survey results, apparent estimates can be

adjusted to come up with true prevalence estimates

(Ebel and Schlosser, 2000).

If the primary goal is to estimate the risk to a

population from a food–pathogen combination, it

may suffice to structure the model as to use data

and information as close to the consumption point as

possible (e.g. Lindqvist and Westöö, 2000). This

approach could be useful for risk ranking as well

(e.g. US-FDA/FSIS, 2000). In contrast, this approach

has a more limited application in gaining insights into

the factors magnifying the risk or for consideration of

options to reduce the risk.

Given the complexity of many interrelated pro-

cesses in any selected food pathway, it is often

necessary to separate the overall pathway into a

number of distinct modules each representing a par-

ticular stage from production to consumption (Lam-

merding and Fazil, 2000). Common processes and

stages to be modelled in the exposure assessment can

be identified. These include production, distribution,

storage, processing, preparation and handling. This

commonality opens up the possibility to develop

common approaches for performing exposure assess-

ments. In the future, libraries or clearinghouses can be

envisioned which contains common exposure assess-

ment sub-modules that may be modified to the spe-

cific problem by the potential end-user.

A general framework for quantitative exposure

assessment modelling, the Modular Process Risk

Model (MPRM), was recently proposed (Nauta,

2001). In this framework, the consumption stage

was not addressed and processes in the primary

production were not explicitly considered. The frame-

work resembles the approach of the Process Risk

Model (Cassin et al., 1998), but at the heart of the

proposal is the suggestion that each of the process

steps in the exposure assessment can be identified as

one of six basic processes; growth, inactivation,

partitioning, mixing, removal and cross-contamina-

tion. In each step, the number of microorganisms

per unit, e.g. carcass, bottle of milk, a package of

ground beef, is estimated. The size of the unit may

change in the food pathway being described, for

instance as a result of mixing, i.e. several units are
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blended into a larger unit, or partitioning, i.e. a unit is

separated into smaller units. Removal is the process

when some units are selected and removed from the

process. Each of the six basic processes describes a

specific sub-module in the model, and for each basic

process a variety of models can be applied. While

theoretically possible to allocate a basic process to

each processing step, this may, in some cases, be

unnecessary or too complex in relation to the purpose

of the exposure assessment. In those cases, it was

proposed that consecutive processes could be consid-

ered together, aggregated, and described by a ‘‘black

box’’ model. In general, a model should be broken

down into smaller components, disaggregated, as

much as necessary but not more for an efficient but

accurate modelling in relation to the purpose of the

assessment (Vose, 2000).

A beneficial consequence of the development of

the risk analysis framework may be the increased use

of quantitative approaches to address food safety

problems also at the national level. Such an example

is presented below.

3. Example: initial risk assessment of S. aureus in

unripened cheese made from raw milk

3.1. Purpose of assessment/hazard identification

Since December 1998, the sale of dairy products

produced from raw milk is allowed by derogation in

Sweden, if produced and sold on the spot from small-

scale facilities. To get a better basis for a review of

this derogation regulation an assessment of the risk

and the evaluation of some of the factors that influ-

ence its magnitude were requested. The biological

endpoint to be assessed was acute illness due to

consumption of unripened cheese made from raw

milk containing toxinogenic S. aureus. The presence

of S. aureus in cheese made from raw milk is a known

health hazard (Tham et al., 1990), and outbreaks due

to consumption of cheese made from both pasteurised

and raw milk have been reported (Bone et al., 1989;

de Buyser et al., 2001). The risk was assessed based

on data on the prevalence and levels of S. aureus

detected in these products at the time of sale, and the

predicted change in numbers during storage in the

homes of the consumers (Fig. 1).

3.2. Hazard characterisation

The acute effects follow after ingestion of pre-

formed Staphylococcal enterotoxins (SET) after a

short incubation period (1 to 7 h) and include nausea,

vomiting, abdominal pain, and diarrhoea (ICMSF,

1996). Not all strains are capable of producing SET,

but among the enterotoxigenic strains seven types of

toxins have been distinguished based on their anti-

genic properties. Types A and D are the most common

SET’s involved in food poisoning. These SET’s are

formed during the exponential growth of the bacteria,

whereas the other types are predominately formed

when the bacteria enter the stationary phase (ICMSF,

1996). The existence of long-term effects following a

S. aureus food poisoning is to our knowledge not

established. In animal studies a certain degree of

immunity have been shown after repeated exposure

to the same type of SET (ICMSF, 1996).

No dose–response relationships were found in the

literature. Another limitation is that only data on the

number of S. aureus bacteria, not the amount of toxin

per gram of cheese, was available for this study. SET’s

have been detected in food containing around 106 cfu

g�1 (Anunciacao et al., 1995), but there are reports

when both lower (Rörvik and Granum, 1996) and

substantially higher levels (Gockler et al., 1988; Otero

et al., 1988) have been required for SET detection.

Thus, there are no simple relationships available

between the number of bacteria and the concentration

of the toxins. This taken together represents substan-

tial knowledge gaps.

3.3. Exposure assessment

3.3.1. Prevalence and level of S. aureus in unripened

cheese at the time of sale

A survey of enterotoxigenic S. aureus in unripened

cheese (n=37) produced in small-scale facilities in

Sweden between August and September 1997 (Syl-

vén, 1998) indicated that about 30% of the samples

contained S. aureus above the theoretical detection

limit of the analytical method, 100 cfu g�1 (Table 1).

Considering the purpose of the assessment and the

limited data available, it was decided to treat unrip-

ened cheeses made from raw milk as one group. This

was a simplification since these types of cheeses

include cheeses produced from goats or cows milk,
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and represent different geographical regions and man-

ufacturing processes. When more data becomes avail-

able this part of the analysis should be refined.

Further, it was assumed that cheeses can be grouped

into low level (<100 cfu g�1), or high level (>100 cfu

g�1) cheeses. The distribution of S. aureus in low

level cheese was assumed to vary uniformly between

�1 and 2 log cfu g�1, and in high level cheese

according to a cumulative distribution as defined by

the results of the survey (Table 2). Seven of the

isolated strains were characterised and found to be

able to produce SET, although toxin could not be

detected in any of the cheese samples analysed.

3.3.2. Prevalence and level of S. aureus in unripened

cheese at the time of consumption

In the absence of data on the level of S. aureus in

cheese at the time of consumption, these were simu-

Fig. 1. Schematic diagram of model simulating the probability of an unsatisfactory cheese, Puc. The input parameters of the model are described

in Table 2. One simulation consisted of 10,000 iterations and Z is the number of iterations (cheeses) above the threshold.
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lated using a predictive growth model (Food Micro-

Model ver. 3.02, Leatherhead, Surrey, UK). Cheeses

analysed in the survey were sampled from the cheeses

on display at the producers, and the survey was

expected to reflect the levels found at the time of

sale. Changes in the levels of bacteria between sale

and consumption are a function of inactivation (death)

and growth during storage in the refrigerators of the

consumers. The storage scenario investigated (Table

2) was based on expert opinions of the producers and

the authorities. The predicted rate of inactivation was

slow even in the most acid cheeses (pH 4.9), 24 to 55

days for a one-log reduction, compared to the max-

imum storage time (7 days), and inactivation was

therefore not considered.

Predictive models describing growth of S. aureus

as a function of temperature and pH are available in

both the Pathogen Modeling Program (USDA, 1998),

and in Food MicroModel, but these cannot be linked

directly in an iterative process, which is necessary to

perform the Monte Carlo simulation. Therefore, Food

MicroModel was used to predict doubling times at

storage temperatures between 7.5 and 13.5 jC, and at

two pH-values, 5.2 and 6.5, respectively. Growth was

assumed to be negligible below 7.5 jC. The data was

Table 2

Description of model inputs

Symbol Name Unit Assumption/distribution

Producer

Pp Prevalence of S. aureus in cheeses 0.3 or Beta(11+1, 37�11+1)

1�Pp Prevalence of non-detect cheeses

Cpos Level in positive cheese Log cfu g�1 Cumulative based on data in Table 1 RiskCumul(2;6;

{2.8;3;3.3;3.6;4.5;4.6;4.7;5.1;5.5};

{0.083;0.167;0.25;0.333;0.583;0.667;0.75;0.833;0.917}

Cneg Level in non-detect cheese Log cfu g�1 Uniform(�1,2), Uniform(0,2) or Uniform(�2,2)

N0 Level of S. aureus in cheese

at the time of sale

Log cfu g�1 Discrete(Cpos: Cneg, Pp: (1�Pp))

Consumer

T Storage temperature jC Trigen(4, 8, 12, 2.5%, 99%)a

ts Storage time h Triang(1,72,168)a

tlag lag phase at pH 5.2 h ln tlag=�3.82545�ln T+13.18789 (R2=0.997)

tlag lag phase at pH 6.5 h ln tlag=�3.43821�ln T+11.53728 (R2=0.999)

DT Doubling time at pH 5.2 h ln DT=�2.66466�ln T+9.15909 (R2=0.998)

DT Doubling time at pH 6.5 h ln DT=�2.51334�ln T+7.98642 (R2=0.997)

teff Time for growth h teff=ts�tlag
Nt Level of S. aureus at the

time of consumption, ts

Log cfu g�1 Nt=N0+Log10(2)�(teff/DT)

Unsatisfactory cheese, Puc

Threshold Constant Log cfu g�1 106, 105, 107, or 108

Variable Log cfu g�1 Triang(5,6,8) or Uniform(5,8)

a Based on expert opinion.

Table 1

Survey of the prevalence and levels of S. aureus in unripened cheese

produced from raw milk in Sweden 1997 (Sylvén, 1998)

Level (log cfu g�1) No. of samples

Nd (<2) 26

2.8 1

3.0 1

3.3 1

3.6 1

> 4.5 3

4.6 1

4.7 1

5.1 1

>5.5 1

Meana: 1.6 log cfu g�1 Worst case: 6.0 log cfu g�1

S. aureus was detected in 11 out of 37 samples.

Nd=not detected.
a Mean of the logs. The level in non-detect cheeses was

assumed to be 0.5 log cfu g�1, i.e. the mean of the Uniform(�1,2)

distribution.
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log–log transformed to obtain a simple, linear, rela-

tionship between doubling time and temperature that

could be used in the simulation model (Table 2). The

doubling time was then used in combination with a

simple growth model to predict the log numbers at the

selected storage conditions (Table 2). The lower pH-

value may be representative for cheeses produced

using a starter culture, whereas the higher was the

average pH when 48 unripened cheeses of different

types were analysed between 1988 and 1994 (pH=4.9

to 7.3, Björn Walldén, pers. comm.). It was assumed

that there was a lag-phase before growth was initiated

and a relationship between lag-phase and temperature

was calculated in the same way as for doubling time

(Table 2).

3.3.3. Consumption

The absence of a dose–response model made it

pointless to consider consumption in the exposure

assessment. In order to evaluate risk at the consumer

level, preparation (including cross-contamination) and

consumption steps need to be incorporated into the

exposure assessment. Since data on consumer behav-

iour is scarce simplifying assumptions often have to

be made. This constitutes a serious data gap and

consequently a major source of uncertainty.

3.4. Risk characterisation

Since consumption was not considered and a

dose–response model was lacking the present study

was not a complete risk assessment. Instead the level

of bacteria per gram was used as a proxy for the

potential SET concentration and hence, for the poten-

tial risk to cause illness. The assessment endpoint

selected for evaluation purposes was the probability

that an unripened cheese made from raw milk con-

tained at least 6 log cfu S. aureus g�1 at the time of

consumption. This endpoint was termed Puc, the

probability of an unsatisfactory cheese. The relation

of this endpoint to public health was not defined and it

should be emphasised that in order to fully assess the

impact of a hazard both to an individual and to

society, a dose–response model and a full exposure

assessment including consumption is necessary.

A spreadsheet model was developed in Excel, and

simulated using the @Risk software version 4.0

(Palisade, NY, USA). A simulation consisted of

10,000 iterations using Latin Hypercube sampling.

The model is described schematically in Fig. 1. In

developing the risk assessment, several assumptions

were made and the influence of these assumptions on

the magnitude of Puc were also investigated (Fig. 1).

To investigate the influence of the arbitrarily selected

and constant threshold value we made a set of

simulations using a constant threshold of 5, 7 and 8

log cfu g�1, respectively, or a variable threshold with

distribution Triangular(5,6,8) and Uniform(5,8) log

cfu g�1, respectively (Table 2). In addition, the

influence of a lower proportion, 40%, of enterotox-

inogenic strains was also tested. This proportion was

found in Norwegian cheeses made from raw milk

(Kruse, 1999). To investigate the influence of a

temperature limit for toxin production the model

was calculated under the condition that the storage

temperature must be above 10 jC for toxin production

to occur. To investigate the influence of the minimum

level of S. aureus in low level cheese, three simula-

tions were carried out with the same random generator

seed but using �2, �1, and 0 log cfu g�1, respec-

tively, as the minimum value in the uniform distribu-

tion. The upper parameter was kept constant at 2 log

cfu g�1.

The uncertainty in the estimation of the prevalence

of S. aureus in cheese based on the survey can be

described by a beta-function; Beta(n�s+1, s+1),

where n is the total number of samples and s is the

number of positive samples (Vose, 2000). This beta-

function describes the probability distribution of true

prevalences, which could have yielded 11 positive

samples if a total of 37 samples were analysed. To

demonstrate the influence of this uncertainty on the

simulated levels of S. aureus and Puc, variability and

uncertainty was separated in a second-order model.

The model calculated variability, and the effect of

uncertainty was investigated by simulating the model

10 times. Prior to each simulation, a value for the

prevalence was sampled from the probability distri-

bution described by Beta(27, 12).

3.4.1. Results of risk characterisation

3.4.1.1. Simulated levels of S. aureus in cheese.

Based on the mean or the median of the model

parameters, the simulated level of S. aureuswas always

below the threshold, while it was always above the
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threshold in the worst case-scenario (data not shown).

Thus, point estimates was not useful in this study and a

probabilistic approach was used in the following.

The simulated level of bacteria in low pH cheese

was generally lower than in high pH cheese, due to

the slower growth in a more acid environment (Fig.

2a). For instance, the probability that a cheese con-

tains less than 1000 cfu S. aureus g�1 at the time of

consumption was 0.67 (high pH) and 0.74 (low pH),

respectively (Fig. 2b).

The final level of bacteria at the time of consump-

tion depends on the interplay between the model

parameters and it does not take exceedingly large

values for unsatisfactory levels of bacteria to result

(Table 3). In high pH cheese, the lowest storage

temperature resulting in an unsatisfactory cheese

Fig. 2. Simulated levels of S. aureus, log Nt, at the time of consumption. A comparison of the levels in high and low pH cheese, respectively,

presented in (a) as a probability distribution plot, and in (b) as a cumulative probability distribution plot. The table insert shows the 5 percentile,

95 percentile, the mean, and median of the simulated level (log cfu g�1).
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was 7.5 jC, the shortest storage time 39 h, and the

lowest initial level of bacteria was 2 cfu g�1, i.e.

below the detection limit of the analytic method used.

The corresponding values in low pH cheese were 9.0

jC, 68 h, and 7900 cfu g�1 (103.9, Table 3). These

numbers are for illustrative purposes and should not

be taken as limits for cheeses of satisfactory quality.

A scenario analysis indicated that in both types of

cheese the initial level of S. aureus, the storage

temperature and time all contributed significantly to

a S. aureus level above 6 log cfu g�1. At both pH

values, the initial level of S. aureus were the most

significant, followed by the storage temperature. In

iterations yielding levels above this threshold, the

median initial level in high pH was 4.6 log cfu g�1,

the median storage temperature was 10.4 jC, and the

median storage time was 111 h. In low pH cheese, the

corresponding values were 5.4 log cfu g�1, 11.1 jC,
and 114 h.

3.4.1.2. Probability of an unsatisfactory cheese at the

time of consumption depending on model assump-

tions. Of all assumptions tested, the magnitude of

the threshold had the greatest effect on the probability

of an unsatisfactory cheese, Puc. Using the 6 log cfu

g�1 threshold, Puc was a factor of 8 lower in high pH

cheese (0.048) than in low pH cheese (0.006). Treat-

ing the threshold as a variable instead of a constant (6

log cfu g�1) had practically no effect (high pH) or

increased Puc by less than a factor of 3 (low pH, Fig.

4). A change in threshold from 6 to 5 log cfu g�1

increased Puc by a factor of 13 for low pH cheese and a

factor of 2.6 for high pH cheese (Fig. 4). Considering

all thresholds, the largest impact on Puc, expressed as

the ratio between the largest and the smallest estimate

of Puc was less than a factor of 36, except in one case;

low pH cheese and a threshold of 5 log cfu g�1 (Fig. 4).

In comparison, the difference between cheeses as a

function of pH was less than a factor of 30 (Fig. 4).

Thus, the uncertainty introduced by the different

assumptions was of the same order of magnitude (high

pH) or 5 times larger (low pH), as the estimated

variability of Puc between the pH values examined.

Using 40% as the proportion of enterotoxigenic

strains reduced Puc by a factor of 2.5, while a 10 jC
limit for toxin production reduced Puc from 0.05 to

0.03 (high pH) and 0.006 to 0.005 (low pH). The

relatively modest influence of a temperature limit on

the magnitude of Puc indicated that it was the high

storage temperatures that had the largest influence on

Puc already in the first simulation. Although the mini-

mum, the median, and the mean simulated level of S.

aureus increased with an increasing minimum level of

the uniform distribution, the influence on Puc was

negligible. For instance, in high pH cheese Puc was

0.046, 0.047 and 0.051 for a minimum level of 1 cfu

per 100 g, 1 cfu per 10 g, or 1 cfu per g, respectively.

3.4.1.3. The effect of uncertainty in the prevalence

estimate on the simulated level of S. aureus in

cheese. The effect of uncertainty of the prevalence

estimate on the simulated level of S. aureus is illus-

trated by the difference between curves in Fig. 3.

Based on 10 simulations, the mean (standard devia-

tion) of Puc at the time of consumption was 0.045

(0.009) and 0.006 (0.002) for a high and low pH

Table 3

Some parameter combinations that resulted in simulated levels above the threshold selected for an unsatisfactory cheese, 6 log cfu g�1

Final level (log cfu g�1) Initial level (log cfu g�1) Storage temperature (jC) Storage time (h)

pH=5.2

6.0 min 5.2 11.4 89

6.2 3.9 min 12.3 125

6.1 6.0 9.0 min 125

6.4 5.7 12.1 68 min

pH=6.5

6.0 min 4.8 9.3 93

6.6 0.35 min 11.8 145

6.3 5.7 7.5 min 136

6.1 5.7 10.8 39 min

Min indicates the lowest value for each parameter occurring in these iterations.
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cheese, respectively, and the ranges was 0.024 to

0.060 (high pH), and 0.002 to 0.008 (low pH). This

contribution was modest in comparison with the true

variability in the system reflected by the range of

bacterial levels within a simulation (Fig. 3).

3.4.2. Discussion

To evaluate the potential risk associated with

unripened cheese made from raw milk, predictive

microbiology and survey data was combined with

probabilistic modelling to simulate the level of S.

aureus at the time of consumption. Due to limited

data and absence of dose–response models, a com-

plete risk assessment and estimation of risk was not

possible. Despite these limitations this type of quanti-

tative assessment was still worthwhile since it was

possible to gain insights and to evaluate several

factors that influence the potential risk, e.g. pH, the

initial level of S. aureus, storage conditions. In addi-

tion, any simulation study build on existing knowl-

edge about the system, and the identification of gaps

in the scientific knowledge is also a useful outcome of

a modelling exercise (Jordan et al., 1999). However,

before using a model for predictive purposes an

appreciation of its limitations is necessary since the

results are valid only to the extent that data reflect true

conditions and model assumptions are valid.

The result of the assessment indicated that a large

fraction of the cheeses could contain unsatisfactory

levels of S. aureus at the time of consumption. Staph-

ylococcal food poisoning due to cheese has not been

reported to any great extent to the authorities. Despite

the fact that there is a substantial underreporting

(Lindqvist et al., 2001), this may suggest that the

potential risk as defined here overestimates the real

risk. The environmental conditions during which S.

aureus are able to form toxin are more restricted than

those at which they can grow. This and our choice of

threshold, which was at the lower end of those levels

that have been reported in connection with outbreaks

(Gockler et al., 1988; Otero et al., 1988), were in

favour of such an interpretation. Most likely there is a

large variation of the actual threshold depending on

the bacterial strain, the type of food, and the individ-

ual consuming the food. However, describing the

threshold as a variable instead of a constant (6 log

cfu g�1), had a fairly limited effect on Puc (Fig. 4).

Similarly, the maximum relative impact of the other

Fig. 3. The effect of uncertainty in the prevalence estimate on the simulated level of S. aureus at the time of consumption in high pH cheese. The

results of 10 simulations of the second-order model, which separated variability and uncertainty, are shown as cumulative probability plots. The

separate curves indicate the true variability within a simulation and the difference between curves is the effect of uncertainty in the estimated

prevalence. Thus, in this assessment, the effect of true variability on the simulated levels dominated over the effect of uncertainty of the

estimated prevalence.
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model assumptions on Puc was also fairly limited,

except in the case of a constant threshold of 5 log cfu

g�1 for a low pH cheese (Fig. 4). To simplify the

assessment, only two pH values were used in the

study. At both these pH values S. aureus can grow but

we have limited information on the relative distribu-

tion of pH in these types of cheeses. The lower pH,

5.2, may be representative for growth in cheeses

where starter culture have been added. It is also

possible that the predictive growth model overesti-

mated growth, since it was based on experiments in

broth culture without a competing background flora.

The growth of S. aureus in dairy products is often

hampered by the presence of competitors (Halpin-

Dohnalek and Marth, 1989).

The second-order model attempted to illustrate a

way to resolve the variability and uncertainty of one of

the model parameters. This analysis enabled us to

estimate the impact of the uncertainty on the outcome

of the model and indicated that variability not the

uncertainty of the prevalence estimate dominated the

total variability of the output, i.e. the level of S.

aureus. Thus, efforts to better describe the variability

of the initial levels of S. aureus should be more

worthwhile than studies of the prevalence. This is

not unexpected since initial levels range several orders

of magnitude. How well the samples in the survey

represent these types of cheeses was not taken into

account in this analysis. It should be pointed out that

there is uncertainty associated also with the parameters

describing variability, e.g. initial level of bacteria,

storage temperature and time, and growth parameters,

but this uncertainty was not addressed. Nauta (2000)

introduced a parameter ax representing the fraction of

the total variance attributable to uncertainty for param-

eter x, and 1�ax representing the fraction due to

variability, to accommodate a situation where an input

distribution reflects both variability and uncertainty.

By selecting arbitrary values for the a parameter for

two of the model parameters the impact on the output

results was illustrated (Nauta, 2000). The discussion

about uncertainty and variability is analogous to the

discussion in diagnostic epidemiology of the validity,

i.e. the lack of bias, versus the precision, i.e. the

observed variability, of a test (Martin, 1988; Gardener

and Greiner, 1999). It has been the wisdom that one

should always give priority to the valid estimate, not

necessarily the estimate with the best precision.

The importance of assumptions concerning the

level of bacteria in samples in which the hazard was

not detected was emphasised by the finding that

storage of a ‘‘negative’’ cheese (high pH, 2 cfu g�1)

could lead to levels above the threshold (Table 3). Our

assumption about the distribution of bacteria in the

Fig. 4. The estimated probabilities for an unsatisfactory cheese, Puc, depending on assumptions on the magnitude and distribution of the

threshold level. The threshold level was assumed to be either constant at 5, 6, 7 or 8 log cfu g�1, respectively, or distributed as Uniform(5,8) or

Triang(5,5,8). Puc was generally higher in high pH cheese (white bars) than in low pH cheese (black bars). The number above the bar is the ratio

between Puc and the lowest Puc (threshold of 8 log cfu g�1) within high and low pH cheese, respectively.
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negative samples contributed to the uncertainty of the

assessment, but the result illustrated the importance of

interpreting negative analytical results in relation to

the method used in the analysis. For example, in the

US-FDA/FSIS (2000), risk assessment on Listeria

monocytogenes, samples negative in qualitative anal-

yses were assumed to contain less than 0.04 cfu g�1,

i.e. 1 in 25 g.

An extensive exposure assessment may require the

specification of over 100 model parameters. Only a

few of these inputs drive the assessment in terms of

having a substantial impact on the magnitude or the

ranges of predicted risks. The use of probabilistic

techniques may be restricted to pathways and pro-

cesses that have major effects on the exposure or for

understanding the exposure. This can save resources

in the analysis by simplification of the model without

compromising the scientific integrity or usefulness to

a risk manager. Zwietering and van Gerwen (2000)

presented a technique employing sensitivity analysis

and going from point-estimates over a worst-case

scenario to a stochastic analysis to identify just those

steps in the assessment most contributing to the

variability of the output. In the present study, the

uncertainty of the growth process was not addressed

with probabilistic techniques despite its importance

for the assessment. A limitation of predictive growth

models is that most of them were not developed for

use in probabilistic exposure assessments, and uncer-

tainty or biological variability is only scarcely incor-

porated in predictive microbiology models (Nauta and

Dufrenne, 1999). Consequently, for most of them,

information on the uncertainty and variability associ-

ated with the model parameters are lacking, or the

distinction between them is not made (Nauta, 2001).

The finding that initial levels below detection

could result in an unsatisfactory cheese illustrated

the importance of growth for the safety of these

products. Based on the present assessment, some

inferences with relevance to risk management can be

made. In high pH cheese, even low regulatory limits,

for instance 100 cfu g�1, would not necessarily be

effective (Table 3), whereas in low pH cheese higher

levels than that may be safe (Table 3). Thus, managing

the cheese making process to obtain a pH around 5,

for instance by adding buttermilk as a starter, would

limit growth and increase the safety of these products

substantially. A low pH also reduces the ability of

enterotoxigenic strains to produce SET toxin (Halpin-

Dohnalek and Marth, 1989). Management options

directed at reducing the variability and initial level

of S. aureus in cheeses may also be effective and need

to be addressed in improved versions of the model.

Data gaps that were identified included the occur-

rence, but especially the variation in the level of S.

aureus and SET in these products, domestic storage

temperatures and times, and the occurrence of staph-

ylococcal food poisoning due to these cheeses.

Another knowledge gap concerns our limited under-

standing of how the dose–response relationships for

toxin producing microorganisms such as S. aureus are

best described. Due to this gap the exposure assess-

ment was limited to the level of contamination in the

food product independent of consumption patterns,

and the consumption and preparation steps were not

explicitly addressed. A crucial assumption in our

assessment was the presence of a lag phase before

growth was initiated. In the absence of a lag phase, the

simulated levels of S. aureus and the implications of

this study would be much different. To address some

of the identified limitations, a survey of food storage

temperatures is now underway in Sweden, as is a

study aiming at investigating the growth and toxin

production in these types of cheeses. Finally, other

hazards in addition to S. aureus may be present in raw

milk and may constitute potential health problems,

e.g. Escherichia coli O157:H7, L. monocytogenes,

Campylobacter, but these were not addressed in this

study.
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