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Abstract

Quantitative risk assessment (QRA) modelling is increasingly used in food microbiology as a tool to evaluate health risks
and to support the management of safe food production. Depending on the hazard and the process analysed, a QRA model
may involve complex calculations: probability distributions are derived for the model parameters and the model is evaluated
using specific risk analysis software. Second-order modelling, involving the separation of uncertainty and variability of
model parameters, is considered of increasing importance in several fields of risk analysis. However, it is commonly
neglected in microbial risk assessment studies. In this paper the relevance of second-order modelling in microbial risk
assessment is illustrated by a simple example of a risk assessment of growth of B. cereus in pasteurised milk. It shows that
the prediction of the outbreak size may depend on the way that uncertainty and variability are separated, and that a major
outbreak may be overlooked if the distinction between uncertainty and variability is neglected.  2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction cherichia coli O157:H7 in beef (Marks et al., 1998;
Cassin et al., 1998a; USDA, 1999), Listeria mono-

Quantitative microbial risk analysis (QMRA) is cytogenes in cheese (Bemrah et al., 1998). In these
increasingly being used as a tool to evaluate food studies, the transmission of the hazard involved is
production processes with regards to food safety and modelled through a chain of processes, from animal
public health. Several integrated risk assessment production until consumption. The resulting model
studies have recently been completed or are in may be used to assess the current risk of the process
progress (e.g., on Salmonella enteritidis in eggs and to predict the effects of different risk mitigation
(Buchanan and Whiting, 1997; USDA 1998a), Es- strategies.

A risk assessment can be performed at several
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E-mail address: maarten.nauta@rivm.nl (M.J. Nauta) product and the attending hazard studied (Van Ger-

0168-1605/00/$ – see front matter  2000 Elsevier Science B.V. All rights reserved.
PI I : S0168-1605( 00 )00225-7



10 M.J. Nauta / International Journal of Food Microbiology 57 (2000) 9 –18

wen and Zwietering, 1998; Van Gerwen et al., 2000). QMRA is laborious enough as it is, that it is often
A rough, qualitative analysis may be sufficient to very difficult to separate uncertainty and variability
identify the potential hazards and the critical steps in on the basis of the available data, and that second-
the process, and to get an impression of the attendant order modelling requires more sophisticated simula-
risks. For a thorough quantitative risk assessment; tion techniques.
however, the different steps in the production pro- In this paper we will illustrate why second-order
cess must be described by specific models. Stochas- models may be highly relevant for microbial risk
ticity may be incorporated into these models by assessment and we will show that separation of
using probability distributions for variable or uncer- variability and uncertainty is not only necessary to
tain model parameters. In that case, the model is estimate the uncertainty bounds on the risk estimate
usually analysed by means of Monte Carlo simula- (Cassin et al., 1998a), but may also qualitatively
tion. The output of the QMRA yields a risk estimate affect the outcome of the risk assessment. In a
that should correctly reflect the uncertainty and straightforward example we will concentrate on
variability in the model for the used data (McNab, microbial growth as a variable and uncertain process,
1998; Cassin et al., 1998b). that is a typical compound of many microbial risk

Most QMRA studies published so far, are concen- assessments.
trating on the use of data to fit probability dis- Clearly, the growth process is both variable (the
tributions of model parameters, that are to be used growth curve of one bacterial population will never
for the assessment (Bemrah et al., 1998; Cassin et be exactly the same as that of another population, not
al., 1998a), and the specific models that are to be even for the same strain under identical circum-
used for the processing steps (Van Gerwen and stances) and uncertain (we never know exactly how
Zwietering, 1998). These are challenging topics and growth really progresses, because microbiological
important for a realistic risk assessment. Unfortuna- measurements used to construct a growth curve are
tely, however, the specific interpretation of the always somehow imperfect). For the description of
resulting probability distributions gets little attention. bacterial growth, a range of predictive food micro-
When a Monte Carlo experiment is performed, biology models can be used (see, e.g., McMeekin et
samples are taken from the different distributions al., 1993; Whiting, 1995; Van Gerwen and
that are derived, without a careful consideration of Zwietering, 1998). These models are highly valuable
the thing that the distributions stand for. for the purpose of developing a safe food production

From this perspective the separation of uncertainty process and HACCP, but have not been specifically
and variability as sources of variation of the model developed for the purpose of QMRA. Most predic-
parameters is an important issue, intensely discussed tive models produce point estimates of growth only,
in other fields of risk analysis (e.g., Hattis and and although some computer programs (like the
Burmaster, 1994; Hoffman and Hammonds, 1994; Pathogen Modeling Program, USDA, 1998b) give a
Rai et al., 1996; Murphy, 1998; Anderson and Hattis, confidence interval around these estimates, such an
1999). In this context, ‘uncertainty’ represents the interval most likely represents both uncertainty and
lack of perfect knowledge of the parameter value, variability and does not allow one to distinguish
which may be reduced by further measurements. them.
‘Variability’, on the other hand, represents a true The example below reflects a real risk assessment
heterogeneity of the population that is a consequence study by the fact that we have insufficient infor-
of the physical system and irreducible by additional mation on the source of variation of one of the
measurements (Murphy, 1998; Anderson and Hattis, parameters. We solve this problem by pretending that
1999). At the moment, so-called second-order we are able to precisely separate between variability
models (models that make the separation of the two) and uncertainty. By doing so, we illustrate that it
are scarcely produced in microbial risk assessment. may be better to improperly quantify their sepa-
Although uncertainty and variability are both men- ration, than not to separate them at all. Our goal here
tioned as sources of variation, they are treated alike is not to provide a general method for second-order
(e.g., Marks et al., 1998; McNab, 1998; Cassin et al., QMRA modelling, but primarily to identify a po-
1998a,b). This is caused by the fact that doing a tential problem in QMRA studies. The aim is to
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stimulate further discussion on second-order model- used, running on an Excel 97 SR-2 (Microsoft)
ling in quantitative microbial risk assessment. spreadsheet on a PC.

3. Example2. Methods

Here we apply Eq. (5) to a QMRA problem,In the example below we construct a Monte Carlo
focussing on exposure assessment and bacterialsimulation model for the growth of Bacillus cereus
growth. The objective of the example is to illustratein pasteurised milk in a specific situation. To model
the difference in uncertainty and variability in athe bacterial growth we use a simple predictive
microbial risk assessment and to show why it ismicrobiology model that has been used by, e.g.,
necessary to separate the two. It is not a completeZwietering et al. (1996) and Notermans et al. (1998)
QMRA. Some of the assumptions made may befor B. cereus in pasteurised milk.
disputed, but their aim is to keep the example simpleAs a primary growth model we assume exponen-
and make it easier to focus on our objective.tial growth, neglecting the lag phase:

The product of interest is pasteurised milk, and the
ktN 5 N e , or ln(N ) 5 ln(N ) 1 kt (1) hazard of concern is Bacillus cereus. For this patho-t o t o

gen no dose–response relationship is available. In
where N is the number of cells (cfu) at time t, N is 5t o this example a threshold dose of 10 cfu per con-
the initial number of cells, and k is the specific

sumption dose is considered critical (Notermans et21growth rate (h ). For a secondary growth model,
al., 1998).

temperature is incorporated by a square-root model
(Ratkowsky et al., 1982). 3.1. Problem

œk 5 b(T 2 T ) (2)min
Consider a vat with 100 l pasteurised milk stored

where k is the same parameter as in Eq. (1), T is the between 0 and 48C. Ten samples of 10 ml are taken
growth temperature and T is the theoretical mini- from this vat and tested for the presence of B. cereus.min

mum growth temperature (both in 8C). The value of It appears that one of the ten samples from the vat
b depends on additional growth conditions and the was tested positive with a test that has 100%
microorganism involved. For the parameters b and sensitivity and 100% specificity. From this vat 100

21T Zwietering et al. (1996) give b50.03548C cups containing 0.25 l milk are taken and storedmin
20.5 together at about 108C. After (exactly) 3 days ofh and T 508C. As a simple secondary growthmin

storage 100 people each drink one of the cups ofmodel Eq. (1) can therefore be rewritten as
milk.

2 2ln(N ) 5 ln(N ) 1 b T t (3)t o The general problem is to quantitatively assess the
consequences of this situation for public health.

In our example we use this model equation, but in
two different forms that are better suited for our 3.2. Solution

2 22 21objective. With a5b 324/ ln(10)50.0138C day
Eq. (3) becomes To solve this hypothetical problem, we concen-

trate on three questions: (i) What are the numbers of2log(N ) 5 log(N ) 1 aT t (4)t o B. cereus in the cups at the moment of consumption?
2 (ii) What is the fraction of cups containing more thanand when we define one growth parameter c 5 aT t, 5the critical level of 10 cfu? (iii) What is thethis simplifies to

probability that more than 50 out of 100 cups contain
5log(N ) 5 log(N ) 1 c (5) more than 10 cfu in a cup?t o

Below, these questions are answered by three
For the Monte Carlo computer simulations @Risk different methods. First, we make a ‘deterministic

for Windows 3.5.1 (Palisade, Newfield, USA) is estimate’, without using probability distributions.
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Secondly, we derive probability distributions for the above. This mean, however, has a probability dis-
model parameters without separating uncertainty and tribution too. It is derived from the concentration in
variability. Thirdly, we do the same with making this the vat C, which is estimated from the finding that
distinction. The different results illustrate the rele- one from 10 samples is positive. This concentration
vance of using probability distributions for different is not known exactly: a range of values of C could
model parameters, and the need to separate uncer- lead to the given sampling result.
tainty and variability when applying these distribu- The probability distribution of C can be found by
tions. considering the sampling from the vat as a binomial

1process. Therefore, the uncertainty distribution of
3.2.1. A deterministic estimate the probability p of finding a negative sample can be

2The growth parameter c 5 aT t of Eq. (5) can be described by a Beta distribution. Assuming that we
estimated as c50.0133103103353.9. have no information on p before testing, we apply

The initial number of cells in a cup, N , has to be Bayes’ theorem with a Uniform(0,1) (or identically ao

derived from the finding that one out of 10 10-ml Beta(1,1)) prior. Now p is given by p5Beta(n2s1

samples from the vat is positive for B. cereus. For 1, s11)5Beta(10,2) (Vose, 1996, p. 58). Here, n is
that purpose, consider the probability of no bacterial the number of samples and s is the number of
cells in a sample of 10 ml. According to the Poisson positive samples. Combining this with p5P(0)5

210C 210Cdistribution this probability is P(0)5e , where C e , as derived above for the deterministic esti-
21(ml ) is the concentration in the vat. From the mate, gives a probability distribution of C given by

sample we estimate this probability as nine out of 10, 2ln(Beta(10,2)) /10. The probability distribution of
so P(0)50.9. This gives C52ln(0.9) /10 per ml¯ the mean value of N (the number of cells in 250 ml)o

0.01054 per ml. So in 250 ml we expect 2503 is then given by l5225 ln(Beta(10,2)).
0.01054¯2.63 cfu. The distribution B. cereus cells over the cups

Therefore the point estimate of the final number of remains a separate process. Without separating un-
cells in a cup is log(N )5log(2.63)13.9¯4.32, so certainty and variability, the probability distributiont

4N ¯2.10 cfu per cup. of N per cup is a combination of both probabilityt o

This is a first version of an answer to question (i). distributions:
This estimate is a little lower than the critical level,

N | Poisson(225 ln(Beta(10,2))). (6)owhich implies no health risk of consumption of the
milk. Questions (ii) and (iii) cannot be answered
without the use of probability distributions. Next, consider the growth parameter c. Its value

may differ per cup and will not be known exactly, so
3.2.2. Using probability distributions without it will also be described by a probability distribution.

2separation of uncertainty and variability As c 5 aT t, this probability distribution can be
To assess the probability of an exposure higher assessed by considering the different parameters a, T

than the critical level, we have to implement the and t.
probability distributions of the model parameters. Parameter a is related to the specific growth rate
Below, we derive probability distributions for the of B. cereus in milk (Zwietering et al., 1996). The
parameters N and c from model Eq. (5). In this probability distribution around its estimate a50.013o

section we do not separate between uncertainty and is unknown. In an experimental study on the growth
variability, as is a common practice in many current- rates of different E. coli O157:H7 isolates (Nauta
ly published microbial risk assessment studies. and Dufrenne, 1999) it has been found that this

First, consider the initial number of cells in a cup, growth rate has a standard deviation of a little less
N . Clearly, the value of N must be an integer and than one-tenth of its mean value. We use this findingo o

will be different in different cups. As the distribution to assume here that parameter a has a Normal
of cells from the vat over the cups can be regarded as N(0.013, 0.001) distribution.
a Poisson process, the per cup variability can be

1given by a Poisson distribution. The mean of this This method has been adapted from a course in quantitative risk
distribution can be estimated as l52.63, as derived analysis from David Vose Risk Analysis Consultancy in 1998.
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The storage temperature T will also have a prob- First consider the probability distribution of N , aso

ability distribution, because it will vary and will not derived in the previous section.
be precisely known, depending for example on the The number of cells in the vat is uncertain. It has
refrigerator where the milk has been stored and the one, unknown, value, which is estimated using the
quality of the thermometer in it. Here we assume (for this purpose) rather imprecise instrument of
some imaginary ‘expert opinion’ on this, which qualitatively studying 10 samples of 10 ml. The
states that T has a Normal N(10,1) distribution. mean value of N in a cup, l, is linearly related too

For simplicity we assume that the storage time t is the number of cells in the vat. This number is
exactly 3 days. unknown, estimated from the finding of one positive

2The resulting probability distribution of c 5 aT t, sample from 10. Therefore the distribution of the
shown in Fig. 1, is constructed by a Latin Hypercube mean, l5225 ln(Beta(10,2)) as derived above, is
(Monte Carlo) experiment of 10 000 samples from an uncertainty distribution.
the distributions of a and T. Note that this dis- Given this mean number, the initial number of
tribution is not symmetrical. cells in each of the 100 cups, N , differs per cup ando

The pathogen numbers in the 100 cups in the is variable. So the Poisson(l) distribution describing
example are simulated by calculating log(N ) with the probability of N per cup, is a variabilityt o

Eq. (4) using independent Monte Carlo samples from distribution.
the distributions of N , T and a from the distributions Next, consider the probability distribution of c.o

derived above. The resulting distributions of log(N ) If this distribution represents uncertainty only, itt

for 10 series of 100 cups are given in Fig. 2a. In a means that the increase is identical (but unknown) in
series of 1000 runs with 100 cups the mean number each of the 100 cups. If, on the other hand, this
of cups with log(N ).5 was 26.7, with standard distribution represents variability only, this meanst

deviation 4.51. In none of the 1000 runs 50 or more that we are confident that the distributions do only
cups (from 100) were contaminated above the criti- represent the per cup variability. This implies for
cal level. instance that the probability distribution of the

temperature is a per cup variability. As neither of
3.2.3. Second-order modelling: separation of these extremes seems realistic, we have to construct
uncertainty and variability some ‘in between’ situation that accommodates both

We now focus on the separation of uncertainty and uncertainty and variability. For this purpose we
variability. introduce the parameter a representing the fractionx

of the total variance attributable to uncertainty for
parameter x (such that 12a represents the fractionx

of the total variance attributable to variability). If the
final probability distribution of parameter x is
Normal(m,s), the uncertainty distribution is defined
as N(m,sœa ). For x , a sample of this uncertaintyx u

distribution, the variability distribution is
N(x ,sœ(1 2 a )). (Note that if a 51, N(m,s)u x x

represents an uncertainty distribution and if a 50,x

N(m,s) represents a variability distribution.)
We evaluate c for three situations with different

values for the ‘uncertainty attributable fraction’ of
the temperature, a , and the ‘uncertainty attributableT

fraction’ for parameter a, a : (a) the probabilitya

distributions of T and a represent variability only, so
a 5a 50 (‘a 50’); (b) half the variance in theT aFig. 1. The probability distribution of the growth parameter c 5

2 probability distributions of both T and a representsaT t from Eq. (5), derived from a Normal N(10,1) distribution of
uncertainty, and the other half represents variability,the growth temperature T and a Normal N(0.013,0.001) dis-

tribution of the parameter a, with t53 days. so a 5a 50.5 (‘a 50.5’); (c) the probability dis-T a
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Fig. 2. The results of 10 runs of a Monte Carlo simulation on 100 cups of milk. The distribution of log(N ,), the number of cells in the cups,t

is given for each run. The indicated numbers on the x-axis are upper limits of classes. The numbers of cups without B. cereus (N 50) aret

given at the intersection with the y-axis. Individual lines show the variability between cups, whereas differences between lines indicate the
uncertainty. (a) The results when uncertainty and variability are not separated. The differences between the lines are solely a consequence of
random sampling. In (b)–(d) variability and uncertainty are separated: (b) a 50, so only the number of B. cereus in the vat is uncertain; (c)
a 50.5, so the increase, as expressed by the parameter c, is both variable and uncertain. For (d) a 51, so the increase is uncertain, not
variable. Here, only the initial number of cells in the cups is variable. Note that the difference between total number of cups with log (N ).5t

in the different runs is smallest in (a) and largest in (d), as shown in more detail in Fig. 3.

tributions of T and a represent uncertainty only, so Carlo simulations for 100 cups, resulting in
a 5a 51 (‘a 51’). (mean6standard deviation): (a) 25.9612.0, (b)T a

The separation of uncertainty and variability is 25.6624.7, (c) 26.6639.1 cups. Note that the mean
implemented in Monte Carlo simulations by first numbers are almost the same in all simulations, but
sampling once from the uncertainty distributions of that the standard deviation increases significantly. As
N , a and T for a set of 100 cups, and then sampling the standard deviation is a measure of uncertaintyo

from the variability distributions of these parameters here, it is not surprising that the standard deviation
for each of the 100 cups. increases with the value of a.

The results for log(N ) for 10 runs of 100 cups in The percentages of simulations where 50 or moret

all three cases are shown in Fig. 2b–d. (from 100) of the cups were contaminated above the
The uncertainty distribution of the number of cups critical level (question (iii)) are 3.4, 18.3 and 27.4%,

containing more than the critical level of log(N )55 respectively. Apparently, the probability of a larget

(question (ii)) is studied by running 1000 Monte number of heavily contaminated cups increases when
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the uncertainty increases at the expense of the implicitly assumed that all probability distributions
variability. This is illustrated in Fig. 3, which depicts used are variability distributions; and (2) the result
the results of the 1000 Monte Carlo runs as uncer- of the imaginary case where all distributions are

5tainty distributions. With the 10 threshold dose– assumed to represent uncertainty distributions.
response model assumed here, the number of cups
containing more than log(N )55 is equivalent to thet

outbreak size. The figure shows the (estimated) 4. Discussion
probabilities of an outbreak size larger than or equal
to the number given on the horizontal axis, for In the example given above we illustrated that the
different assumptions on the nature of the input interpretation of (the probability distribution of) the
distributions. It compares the uncertainty about the input of a quantitative microbial risk assessment
outbreak size of the three cases studied with sepa- (QMRA) study may be decisive for the qualitative
ration of uncertainty and variability (a 50, a 50.5 outcome of the risk assessment. Using a determinis-
and a 51) and two extreme cases: (1) without tic estimate only, the analysis concluded that there
separation of variability and uncertainty, where it is was no risk. Using a stochastic model without

Fig. 3. The uncertainty distributions of the outbreak size as found in four sets of 1000 simulation runs with 100 cups, and in the extreme
case that all input distributions represent uncertainty. The outbreak size is equivalent to the number of cups containing more than the

5threshold number of 10 cfu per cup. The probabilities on the vertical axis are the estimated probabilities of an outbreak size larger than or
equal to the number given on the horizontal axis. The dashed lines point at the probabilities of an outbreak size of at least 10 or 50 people.
Without separation of variability and uncertainty, all input distributions are assumed to be represent variability, and the predicted outbreak
size is always larger than 10 and smaller than 50. When variability and uncertainty are separated (with a 50, a 50.5 and a 51), the
probability of an outbreak size of at least 10 decreases, but the probability of an outbreak of size 50 increases. If all input distributions would
represent uncertainty, the outbreak size is either 0 or 100.
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separation of uncertainty and variability, we iden- example does not prove that separation of uncertain-
tified an individual risk, but no major outbreak with ty and variability is crucial in all situations. The
more than 50 people involved. And with a second- specific purpose of the QMRA, that is the exact
order risk assessment model, where uncertainty and research question to be answered, is very important
variability are separated, the outcome was that there here. When, in the example, the focus would have
is a potential individual risk and a potential major been on one person drinking one cup only, things
outbreak. would have been different. In that case the variability

These qualitative conclusions may be disputed as between cups would not have been relevant, as there
they depend on for instance the definitions of an was no ‘population of cups’ defined. In this context,
outbreak and the critical number of cells per con- note that the mean probability that ‘a’ cup is
sumption dose. In practice, a deterministic estimate contaminated with more than the critical level is

ˆof the contamination level that is a little below the about p50.26 in all models analysed, both with and
critical level will not lead to the conclusion that the without separation of uncertainty and variability.
product is safe. In that respect the conclusions of the The probability distribution of this ‘probability
deterministic and stochastic approaches will be the that a cup is contaminated above the critical level’,
same. But whereas a decision maker will apply some p, should be interpreted as an uncertainty distribu-
rough ‘safety margin’ around a deterministic esti- tion. If uncertainty and variability are not separated,
mate to express his feeling of uncertainty, the and it is implicitly assumed that all input distribu-
specific aim of QMRA is to quantify this uncertainty tions are variability distributions, p is a single fixed
about the safety of the process. The example shows value without an uncertainty distribution. In that case
that this quantification of uncertainty in a QMRA sampling from 100 cups is a binomial process with

ˆmay lead to a false conclusion when uncertainty and sample size n5100 and probability p. With p5p5

variability are not separated. 26.7 /10050.267, this distribution predicts a stan-
As the example has been constructed for the dard deviation of 4.42, almost the same as the value

purpose of illustrating the relevance of second-order 4.51 found in our simulations. A plot of this
modelling, it deliberately does not describe a com- Binomial(100, 0.267) overlaps with the ‘all vari-
plete QMRA. Adding models that make the example ability’ curve in Fig. 3.
more realistic, would also make it more complex and If we have uncertainty in the input distributions, p
does not contribute to its transparency. Even for the is uncertain too. As illustrated in Fig. 3. this results
very short ‘food production process’ described, in a wider spread of the number of cups contami-
several simplifying assumptions were made. Among nated above the critical level and thus in an increas-
these are a simple exponential growth model without ing uncertainty about the outbreak size. As a result
a lag phase, a constant and known minimum tem- the uncertainty about the outbreak size increases with
perature of growth, a perfect test for B. cereus used increasing uncertainty in the input distributions. The
for sampling from the vat and a one-value threshold probability of an outbreak of less than about 25
dose–response model. It should be realised that the people is larger when the uncertainty about the input
effect of incorporating a more precise description of is small, but the probability of a larger outbreak
these aspects on the final risk estimate may possibly increases with increasing uncertainty. In the extreme
exceed the illustrated effect of (not) separating and unrealistic case that all input probability dis-
uncertainty and variability in growth. However, tributions would reflect uncertainty, there would be
extending the model by incorporating additional either no outbreak (with probability 12p) or an
parameters and models, will also give an increase in outbreak with all 100 people (with probability p).
sources of variability and uncertainty. To evaluate The separation of uncertainty and variability is
their effect, second-order modelling should be con- sometimes straightforward, as in the example for the
sidered throughout the model. If second-order initial number in a cup N . On the other hand it cano

modelling is important in a simple model, there is no be very difficult to properly separate the two, as with
reason to assume that it will be cancelled out in a the growth parameter c. Unfortunately the latter is
complex model. generally the case. Often one has very little idea

Being a specifically designed QMRA problem, the about even the form of the distribution, let alone
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