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Abstract

Food safety and quality are influenced by the presence (and possible proliferation) of pathogenic and spoilage

microorganisms during the life cycle of the product (i.e., from the raw ingredients at the start of the production process

until the moment of consumption). In order to simulate and predict microbial evolution in foods, mathematical models are

developed in the field of predictive microbiology. In general, microbial growth is a self-limiting process, principally due to

either (i) the exhaustion of one of the essential nutrients, and/or (ii) the accumulation of toxic products that inhibit growth.

Nowadays, most mathematical models used in predictive microbiology do not explicitly incorporate this basic microbial

knowledge. In this paper, a novel class of microbial growth models is proposed. In contrast with the currently used logistic type

models, e.g., the model of Baranyi and Roberts [Baranyi, J., Roberts, T.A., 1994. A dynamic approach to predicting bacterial

growth in food. International Journal of Food Microbiology 23, 277–294], the novel model class explicitly incorporates nutrient

exhaustion and/or metabolic waste product effects. As such, this novel model prototype constitutes an elementary building

block to be extended in a natural way towards, e.g., microbial interactions in co-cultures (mediated by metabolic products) and

microbial growth in structured foods (influenced by, e.g., local substrate concentrations). While under certain conditions the

mathematical equivalence with classical logistic type models is clear and results in equal fitting capacities and parameter

estimation quality (see Poschet et al. [Poschet, F., Vereecken, K.M., Geeraerd, A.H., NicolaR, B.M., Van Impe, J.F., 2004.

Analysis of a novel class of predictive microbial growth models and application to co-culture growth. International Journal of

Food Microbiology, this issue] for a more elaborated analysis in this respect), the biological interpretability and extendability

represent the main added value.
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1. Introduction

Both the safety and quality of a food product are

determined by the presence (and possible proliferation)

of pathogenic and spoilage microorganisms during its

life cycle (i.e., from the raw ingredients at the start of
obiology xx (2004) xxx–xxx
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the production process until the moment of consump-

tion). In the context of a global process model (see Fig.

1), the mathematical modelling of the evolution of

microorganisms is, next to the mathematical modelling

of quality influencing factors, an important step in

quantitatively describing the influence of processing

conditions on food safety. The evolution of the micro-

bial population and the quality attributes are affected by

the local environmental conditions. For food products

homogeneous in temperature, for example, after a few

hours in the refrigerator, the local temperature corre-

sponds to the global one. However, during heating up

gradients in temperature exist. Other environmental

conditions may be spatially distributed as well (e.g.,

microbial load, water activity and pH) and are to be

measured or calculated with appropriate model types

(Valdramidis et al., 2004).

Predictive microbiology deals with the develop-

ment of accurate and at the same time versatile

mathematical models, able to describe the microbial

evolution in food products as function of environ-

mental conditions, which are assumed to be known or

measurable (i.e., being the input in the right rectangle

of Fig. 1). The modelling process aims at condensing

existing microbiological knowledge about the patterns

of the microbial behaviour and the microbial physi-

ology into mathematical models (Ross, 1999).

Within each model building process, a complexity

trade-off has to be made between model accuracy and

model manageability: the model should be complex

enough to cover the main dynamics but should also be
Fig. 1. The global process model. The large rectangle represents a foo

distributions (left rectangle). These local environmental conditions are th

quality (right rectangle).
user friendly (not too demanding with respect to

computational aspects) and parsimonious.

A part of the results and main achievements of this

paper is also presented in Van Impe et al. (2003).
2. General aspects of microbial growth modelling

The most elementary model building block

describing microbial evolution is the following first

order differential equation:

dN tð Þ
dt

¼ l dð Þd N tð Þ ð1Þ

in which N(t) [CFU/mL] represents the concentration

of microorganisms at time instant t and l(d ) [1/h] the
specific growth rate. l(d ) can depend on process

conditions (e.g., temperature), atmospheric condi-

tions, food properties (e.g., pH, concentration of

available substrate(s) and/or metabolites) and compo-

nents governing interspecies/intraspecies interactions.

l(d ) is positive in the case of microbial growth and

negative in the case of microbial inactivation. In this

paper, we focus on microbial growth.

Single species microbial growth, whether in a

bioreactor or in a (liquid) food product, normally

passes three phases: first a lag phase during which the

microbial cells adapt to their new environment,

followed by an exponential growth phase during

which the cells multiply exponentially, and finally a

stationary phase during which the maximum popula-
d product revealing (possibly) a number of environmental factors

e input for the modelling of the microbial evolution and the food
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Fig. 2. Description of the model of Baranyi and Roberts on a typical

growth curve in monoculture: growth of E. coli K12 at 35 8C.
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tion density is reached (as shown in Fig. 2). More

details on the exemplary experimental data shown can

be found in Bernaerts et al. (2000).

Most models used in predictive microbiology are

of the logistic type and do not explicitly reflect

microbiological (mechanistic) knowledge on the self-

limiting growth process when reaching the stationary

phase (Lynch and Poole, 1979). This is illustrated

with the nowadays widely used growth model of

Baranyi and Roberts (George et al., 1996; Fernández

et al., 1997; McClure et al., 1997; van Gerwen and

Zwietering, 1998; Rodrı́guez et al., 2000; Coleman et

al., 2003; Cornu et al., 2003; McKellar and Lu, 2003;

Panagou et al., 2003), which can be considered as a

prototype of logistic type microbial growth models.
Fig. 3. Typical logistic inhibition function (left
The basic equation describing pure exponential

growth reads as follows:

dN tð Þ
dt

¼ lmaxN tð Þ ð2Þ

with N(t) [CFU/mL] the microbial load at time instant

t and lmax [1/h] the maximum specific growth rate.

The logistic type growth model incorporates a logistic

type inhibition function to describe the stationary

phase (Verhulst, 1838; Pearl and Reed, 1920)

dN tð Þ
dt

¼ lmax 1� N tð Þ
Nmax

�
N tð Þ

�
ð3Þ

with Nmax [CFU/mL] the maximum microbial cell

concentration. The inhibition function is a monotoni-

cally decreasing function with values between

(approximately) one and zero. A typical time behav-

iour of this inhibition function is presented in the left

plot of Fig. 3. Baranyi and Roberts (1994) introduced

the following adjustment function a as an extra factor

to describe the lag phase:

a tð Þ ¼ Q tð Þ
1þ Q tð Þ ð4Þ

with Q(t) [–] the so-called physiological state of the

cells, which is assumed to be proportional to the

concentration of a (hypothetical) critical substance

simulating the bottleneck in the growth process. It is

assumed that the physiological state Q(t) is exponen-

tially increasing. The adjustment function a(t) is a

monotonically increasing function with values

between (approximately) zero and one. A typical time
plot) and adjustment function (right plot).
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Table 1

Model parameter values of the description of the model of Baranyi

and Roberts, the P-model, and the S-model on an experimental data

set of E. coli K12 at 35 8C

Model ln(N0) lmax ln(Q0) ln(Nmax) ln(KP) ln( YN /S)

Baranyi 11.601 2.3045 �3.4316 21.151

P-model 11.601 2.2995 �3.4300 21.151

S-model 11.602 2.3030 �3.4357 21.152

Fig. 4. Cell concentration of L. innocua versus time of differen

L. innocua (Li)/L. lactis (Ll) co-culture experiments. *: monoculture

N0, Li=10
3, +: N0, Li=10

3, N0, Ll=10
3, 4: N0, Li=10

3, N0, Ll=10
4, �

N0, Li=10
3, N0, Ll=10

5, 5: N0, Li=10
3, N0, Ll=10

6, R : N0, Li=10
3

N0, Ll=10
7.
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behaviour of this adjustment function for a growth

curve with lag is presented in the right plot of Fig. 3.

The global implicit formulation valid under

dynamic environmental conditions proposed by Bar-

anyi and Roberts (1994) reads then as follows:

dN tð Þ
dt

¼ l dð Þd N tð Þ

¼ lmax

Q tð Þ
1þ Q tð Þ

� �
1� N tð Þ

Nmax

� �
N tð Þ

with N t ¼ 0ð Þ ¼ N0 ð5Þ

dQ tð Þ
dt

¼ lmaxQ tð Þ with Q t ¼ 0ð Þ ¼ Q0 ð6Þ

The first differential equation describes the time

evolution of the microbial load N(t), as illustrated in

Fig. 2. The first factor in the right-hand side of Eq. (5)

induces the exponential phase, the second factor is the

adjustment function, and the third factor is the

inhibition function. The second differential equation

(Eq. (6)) describes the time evolution of Q(t), which

increases exponentially. Remark that the adjustment

function can be regarded as mechanistically inspired,

whereas the logistic-type inhibition function is purely

empirical as it does not include any cause–effect

relationship (Lynch and Poole, 1979). A model

description using an exemplary experimental data

set with the indication of all model parameters is

presented in Fig. 2. The numerical values of the

parameter estimations are listed in Table 1, first row.

Themodel of Baranyi and Roberts is widely used for

a number of reasons: (i) it is easy to use, (ii) it is

applicable under dynamic environmental conditions,

(iii) it has a good fitting capacity, and (iv) most of the

model parameters are biologically interpretable. Con-

trary to the adjustment function, the inhibition function

is not mechanistically inspired. Although clearly

interpretable, this mathematical abstraction, inherited

from the logistic model type, lacks a mechanistic base
since it does not encapsulate a reasonwhy the microbial

population stops growing. In other words, it does not

reflect any cause–effect relationship. Therefore, the

model fails in describing more complex yet more

realistic situations (e.g., co-cultural growth, growth in

structured media). In the case of growth in structured

media, the inhibition of growth because of substrate

depletion (due to, e.g., hampered migration of the

substrate through the (solid) structure of the medium)

cannot be described by a single model parameter Nmax

which is not related with the medium structure and the

available substrate concentration. In the case of co-

cultural growth, the inhibition of growth because of (i)

substrate depletion (which is competitively consumed

by all organisms in the medium) and/or (ii) toxic

product formation by some organisms cannot be

described by means of a (fixed value of) Nmax which

is not related to the toxic product concentration, the

initial concentration of all other organisms in the

medium,. . .An example of co-culture growth is pre-

sented in Fig. 4, originating from Vereecken (2002). In

this figure, the influence of an increasing inoculum size

of Lactococcus lactis on the evolution of Listeria

innocua (always with the same inoculum size) is clear:

the maximum specific growth rate is unaffected but the

maximum population level of L. innocua attained is

decreasing with increasing L. lactis inoculum size. The

biological mechanism governing this phenomenon is
t

:

,
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twofold: (i) the production of lactic acid, mainly by the

lactic acid bacterium L. lactis, and (ii) the inhibition of

the L. innocua outgrowth by the produced lactic acid. A

logistic model type fails to describe this metabolic

product mediated phenomenon.

In order to overcome the above drawbacks of

logistic model types, a novel class of predictive

models is constructed with a more mechanistically

inspired description of the stationary phase.
Fig. 5. Influence of the initial substrate concentration on the

maximum microbial load population (after Bailey and Ollis, 1986).
3. A novel class of predictive growth models

The novel class of growth models should have

following model properties:

(i) the kinetics (more specifically the inhibition

function to describe the stationary phase)

should be more mechanistically inspired,

(ii) as compared to traditional models, the model

fitting capacity should be equal under compa-

rable conditions,

(iii) easier to extend to more complex, and more

realistic, situations.

Eq. (1) remains the elementary building block of

the novel class of predictive growth models. As a

matter of fact, this equation is the kernel of a

widely applicable, sound model building block

database from which the user can retrieve the

appropriate building blocks constituting the overall

l(d ). The key ingredients of an elementary building

block are the kinetics describing the (micro)biolog-

ical phenomenon.

Single species growth, whether in a (liquid) food

product or in a bioreactor, is a self-limiting process

principally due to either (i) the exhaustion of one of

the essential nutrients and/or (ii) the accumulation

of metabolic waste products which inhibit growth

(Lynch and Poole, 1979). The effect of both

phenomena on the maximum population concen-

tration is depicted in Fig. 5 (Bailey and Ollis,

1986). In order to determine which of both

phenomena limits the exponential growth, following

reasoning should be performed. If an increase of the

initial substrate concentration results in an increase

of the maximum microbial population density

attained (as depicted in the left-hand side of Fig.
5), then the limiting factor is the substrate avail-

ability. If an increase of the initial substrate

concentration (whether a C-source, N-source, essen-

tial element, a vitamin,. . .) does not affect the

maximum microbial population density (as in the

right part of Fig. 5), then the limiting factor is the

formation of (a) toxic product(s).

The global structure of the novel class of predictive

growth models consists of a general expression for the

microbial evolution

dN tð Þ
dt

¼ l dð Þd N tð Þ

¼ lmaxlQ Qð ÞlP Pð ÞlS Sð ÞN tð Þ
with N t ¼ 0ð Þ ¼ N0 ð7Þ

together with the appropriate differential equations

(and initial conditions) for the physiological state Q

[–], the toxic/inhibiting product P [M] and the

substrate S [M]. The first factor describes the

exponential growth with maximum specific growth

rate lmax [1/h]. The second factor lQ(Q) accounts

for the lag phase and is (given the scope of this

paper) selected equal to the adjustment function of

the model of Baranyi and Roberts (1994). The third

factor lS(S) describes the influence of the phenom-

enon of exhaustion of a substrate S on the

microbial evolution. The fourth factor lP(P)

accounts for the inhibition of microbial growth by

a toxic product P. Some inhibition functions have

been presented in literature. As far as the maximum
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Fig. 6. Description of the basic P-model on an experimental data set

of E. coli K12 at 35 8C.
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population density is concerned, this novel class of

predictive models is clearly more mechanistically

inspired and is easier to extend in comparison with

the existing models. Stationary phase behaviour is

induced through an increasing toxic product accu-

mulation and/or substrate exhaustion and can be

attained at any population level N(t). This is in

contrast with many predictive models that, based on

experimental data, impose a mathematical structure

that prespecifies a fixed maximum population

density Nmax. Two limiting case studies are further

discussed.

3.1. Back to basics: a so-called P-model as a first

limiting case study of the novel class of microbial

growth models

In a first case study, the stationary phase is

assumed to be solely resulting from toxic product

inhibition. Mathematically this implies that the factor

lS(S) in Eq. (7) is (almost) equal to 1. Other

assumptions are that (i) the initial concentration of

the toxic product P(t =0) is equal to zero and (ii)

there is only one growth inhibiting product. The

model consists of the following three differential

equations:

dN tð Þ
dt

¼ l dð Þd N tð Þ

¼ lmax

Q tð Þ
1þ Q tð Þ

� �
1� P tð Þ

KP

� �
N tð Þ

with N t ¼ 0ð Þ ¼ N0 ð8Þ

dQ tð Þ
dt

¼ lmaxQ tð Þ with Q t ¼ 0ð Þ ¼ Q0 ð9Þ

dP tð Þ
dt

¼ YP=Nlmax

Q tð Þ
1þ Q tð Þ

� �
1� P tð Þ

KP

� �
N tð Þ

with P t ¼ 0ð Þ ¼ 0 ð10Þ

Eq. (8) describes the microbial evolution in time, and

consists of the adjustment function of the model of

Baranyi and Roberts (see Eq. (5)). As an example,

the inhibition function is chosen to be linear in

function of the toxic product concentration P,

inspired on Ghose and Tyagi (1979). The larger the

concentration of product P, the smaller the increase
in microorganisms. Eq. (9) is equal to the second

equation of the model of Baranyi and Roberts (Eq.

(6)) and describes the exponential evolution of the

physiological state. Eq. (10) describes the evolution

(i.e., production) of the toxic product concentration

P, with YP/N the yield for product over micro-

organisms. This equation expresses that, as an

example, there is only growth associated production

of the toxic product P. The complete model (Eqs.

(8)–(10)) has an equal fitting capacity as compared

to the model of Baranyi and Roberts, which is

illustrated by comparing Fig. 6 with Fig. 2 and

comparing the model parameter estimates of both

models, listed in Table 1, second and third rows.

3.2. Back to basics: a so-called S-model as a second

limiting case study of the novel class of microbial

growth models

In a second case study, the stationary phase is

assumed to be solely the result of substrate exhaus-

tion, and not of toxic product inhibition. Mathemati-

cally this implies that the factor lP(P) in Eq. (7) is

assumed to be equal to 1. For this case study, it is also

assumed that (i) a linear relation is appropriate to

describe the influence of substrate consumption on the

microbial growth, (ii) there is no substrate consump-

tion for maintenance, (iii) there is no substrate

breakdown in the medium, (iv) no additional substrate

is added during the growth process, and (v) there is
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only one limiting substrate. These assumptions result

in the following three differential equations:

dN tð Þ
dt

¼ l dð Þd N tð Þ

¼ lmax

Q tð Þ
1þ Q tð Þ

� �
S tð ÞN tð Þ

with N t ¼ 0ð Þ ¼ N0 ð11Þ

dQ tð Þ
dt

¼ lmaxQ tð Þ with Q t ¼ 0ð Þ ¼ Q0 ð12Þ

dS tð Þ
dt

¼ � lmax

Q tð Þ
1þ Q tð Þ

� �
S tð Þ
YN=S

N tð Þ

with S t ¼ 0ð Þ ¼ 1 ð13Þ

Eq. (11) describes the microbial evolution in time, and

consists of the adjustment function of the model of

Baranyi and Roberts (see Eq. (5)) and an inhibition

function which is (as an example) selected equal to the

substrate concentration S. Eq. (12) is equal to the

second equation of the model of Baranyi and Roberts

(Eq. (6)) and describes the exponential evolution of

the physiological state. Eq. (13) describes the evolu-

tion (i.e., consumption) of the substrate concentration

S. It is assumed that there is only substrate con-

sumption for the growth process, and not for main-

tenance processes. By consequence, the right-hand

side of Eq. (13) is (except for the minus sign and YN/S,

the yield coefficient of the concentration of micro-
Fig. 7. Description of the basic S-model on an experimental data set

of E. coli K12 at 35 8C.
organisms over (scaled) substrate concentration and

expressed in CFU/mL) equal to the right-hand side of

Eq. (11). The substrate concentration is rescaled in

order to have a strictly monotone decreasing inhib-

ition function with values between one and zero (and

to obtain a rescaled dimensionless substrate concen-

tration). Also this limiting model has an equal fitting

capacity as compared to the model of Baranyi and

Roberts, which is illustrated by comparing Fig. 7 with

Fig. 2 and comparing the second and fourth rows in

Table 1.
4. Conclusions

The main contribution of this paper is the

introduction of a novel class of predictive microbial

growth models which reflect (micro)biological phe-

nomena governing the microbial growth process. This

research particularly focuses on the transition from the

exponential growth phase to the stationary phase,

which is induced through an increasing toxic product

accumulation and/or substrate exhaustion. Contrary to

many predictive models that, based on experimental

data, impose a mathematical structure that prespecifies

a fixed maximum population density, the novel class

of predictive levels can cope with any maximum

population density induced by toxic product accumu-

lation and/or essential substrate depletion. The novel

class of predictive growth models (i) has an equal

fitting capacity as the currently used models (see

Poschet et al., 2004 for a detailed statistical analysis in

this respect), (ii) is applicable to both the macroscopic

(i.e., population) as the microscopic (i.e., individual

cell) level (see Standaert et al., 2004), and (iii) is

easier to extend to more realistic situations. By

consequence, in view of the complexity of the

microbial phenomena to be described, the following

questions need to be addressed: when is simple good

enough? (free after Buchanan et al., 1997), what is the

model used for?, what about a stochastic version of

the model?, can we include some novel measurements

to improve the model?, . . .In order to deal with the

(resulting) increased complexity of the models,

predictive microbiologists should urgently bridge the

gap with bioinformaticians as was abundantly illus-

trated in the presentation of, e.g., Brul et al. (2003) at

the PMF4 conference.
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