
ORIGINAL ARTICLE

FoodMicrobiology, 1999, 16, 593^605 Article No. fmic.1999.0285
Available online at http://www.idealibrary.com on
Estimating the parameters of the
Baranyimodel for bacterial growth

K. Grijspeerdt1*and P. Vanrolleghem2

The identi¢ability properties of the Baranyi model for bacterial growthwere investigated, both structu-
rally and applied to real-life data.Using the Taylor-series approach, it was formallyproven that themodel
is structurally identi¢able, i.e. it is now ascertained that it is certainly possible to give unique values to
all parameters of the model, provided the bacterial growth data are of su¤ciently good quality. The
model also has acceptable practical identi¢ability properties in the presence of realistic data, which
means that the con¢dence intervals on the parameter values are reasonable. However, there was a re-
latively high correlation between the maximum speci¢c growth rate mmax and the suitability indicator
h0. An optimal experimental design to improve parameter estimation uncertainty was worked out,
using the sampling times of the microbial growth curve as experimental degree of freedom. Using a
D-optimal design criterion, it could be shown that the optimal sampling times were concentrated in
four time periods (initial, start and end of exponential growth, end of experiment), each providingmax-
imum information on a particular parameter. Because the optimal experimental design requires a priori
estimates of the parameters, the propagation of the parameter uncertainty into the experimental design
was assessed with a Monte Carlo simulation. In this way, 95% con¢dence intervals could be estab-
lished around the optimal sampling times to be used in the optimal experiment. Based on these inter-
vals, a design was proposed and experimentally validated. The error on the parameter estimates was
more than halved, their correlation diminished and the nonlinearity of the result improved.
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Introduction

Predictive modelling of bacterial growth and
inactivation is an important research topic
among food microbiologists (Buchanan 1993,
Skinner and Larkin 1994, McMeekin et al.
1997). Predictive models allow estimation of
the shelf-life of foods, isolation of critical
points in the production and distribution
process, and can give insight on how envi-
ronmental variables a¡ect the behaviour of
pathogenic or spoilage bacteria.Whiting (1995)
distinguishes three levels among predictive
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microbiological models: primary level models
describe changes of microbial numbers with
time, secondary level models summarize the
e¡ect of environmental conditions and the ter-
tiary level models combine the two ¢rst levels.
Although the concepts presented in this paper
apply to all types of models, the practical
implementation will be restricted to a level
1 model.

Among the most used level 1 predictive mod-
els are the modi¢ed Gompertz model (Zwieter-
ing et al. 1990, McMeekin et al. 1993) and the
logistics model (Peleg 1997). Although based
on theoretical considerations, these models
were not originally developed for modelling
bacterial growth and certainly not for
# 1999 Academic Press
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modelling the logarithm of the bacterial cell
concentration (Baranyi et al.1993).They should
therefore be considered as purely empirical
models. Nevertheless, the parameters in the
model are given physical meanings whose
values are crucial for the deployment and inter-
pretation of simulation results. More recently,
Baranyi and coworkers developed a mechanis-
tic model for bacterial growth (Baranyi et al.
1993, Baranyi and Roberts 1994,1995). In recent
years, this model is being adopted more and
more over the modi¢ed Gompertz model
(George et al. 1996, McClure et al. 1997, Suther-
land et al. 1997). One of the attractive points of
the Baranyi model, besides its good predictive
capabilities, is the fact that it is a truly
dynamic model in the sense that it can deal
with time varying environmental conditions.
In view of the growing attention given to shelf-
life prediction of foods and quantitative risk
analysis of food production cycles (McMeekin
and Ross 1996, Foegeding 1997), this is an indis-
pensable property.

The value of model-based predictions and
risk analysis is to a large extent dependent on
the reliability of the model parameters. Para-
meter values are obtained by ¢tting the model
to experimental data. The experimental error,
the experimental design and the model bias de-
termine the reliability of estimates. The statis-
tical signi¢cance that can be attributed to
parameter estimates is generally referred to
as the identi¢ability of the parameters. Pro-
blems with the identi¢ability arise when para-
meters cannot be signi¢cantly estimated or
when estimates are strongly correlated. The
importance of su¤cient and well distributed
experimental data has been addressed by
Bratchell et al. (1989) and Baranyi et al. (1996)
and cannot be overestimated: a good experi-
mental design can overcome many problems
with parameter identi¢ability.

In this paper, the identi¢ablity properties
of the Baranyi-model have been examined
in detail. The analysis is restricted to the
explicit form of the model for constant envi-
ronment settings only. This was done for two
reasons:

1. The analysis gets quite complicated when
considering the di¡erential equation form
of the model, which could conceal the prin-
ciples of the identi¢ability analysis.

2. Generally, the model is used in the explicit
form when the aim is to estimate the para-
meters. The di¡erential equation form is
subsequently used to simulate dynamic
environmental conditions (Baranyi et al.
1995). It could be more e¤cient to estimate
parameters directly from data gathered
under dynamic environmental conditions
with the di¡erential-equation model. Using
optimal experimental design, Bernaerts
et al. (1998) showed that temperature-
dependent parameters could be estimated
directly from the di¡erential equation form
of the Baranyi-model.

The accuracy of predictions made by predic-
tive microbiological models is dependent on
themodel parameter estimate errors.The smal-
ler these errors, the more reliable predictions
will be. The aim of this paper is to analyse the
identi¢ability properties of the Baranyi model
and to establish an e¤cient method for improv-
ing the reliability of the model parameter esti-
mates based on available knowledge.

The model

The reader is referred to Baranyi et al. (1993)
for the theoretical derivation of the model.The
explicit form of the model is the following
(Baranyi and Roberts 1994):

y�t� � y0�mmaxt�
1

mmax

ln�eÿn�t�eÿh0ÿeÿn�tÿh0�

ÿ 1
m

ln 1� emmmaxt� 1
mmax

ln�eÿn�t�eÿh0ÿeÿn�tÿh0 � ÿ 1
em�ymaxÿy0�

 !
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where:

. y�t� � ln�x�t�� with x�t� the cell
concentration cfu=ml� �

. y0 � ln�x0�; ymax � ln�xmax�; x0 being the
initial and xmax the asymptotic cell
concentration, respectively

. mmax is the maximum speci¢c growth rate
1=h� �
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. m is a curvature parameter to characterize
the transition from the exponential phase

. v is a curvature parameter to characterize
the transition to the exponential phase

. h0 is a dimensionless parameter quan-
tifying the initial physiological state of the
cells. From that, the lag time l�h� can be
calculated as h0=mmax.

For the curvature parameters, Baranyi
(1997) suggests n � mmax and m � 1, values that
are also adopted in this paper. This decreases
the number of parameters by two, so the model
has four parameters: mmax; h0; y0 and ymax.

Baranyi and Roberts (1995) noted that h0 can
be thought of as a suitability indicator of the
micro-organism population to the actual envi-
ronment. If the experimental procedure is
standardized, this suitability indicator will be
more or less constant which is equivalent to the
assumption that the lag and mmax are inversely
proportional.

Structural identi¢ability

Theoretical identi¢ability is related to the pos-
sibility of giving a unique value to a parameter
of a mathematical model (Vanrolleghem and
Dochain 1998). Stated otherwise are para-
meters identi¢able given a model structure
and perfect data of model variables? A struc-
tural identi¢ability analysis can for example
reveal that only certain combinations of para-
meters are identi¢able. The method to analyse
the structural identi¢ability followed here
was developed by Pohjanpalo (1978) and is
based on the Taylor series expansion of the
model. This method consists of examining the
successive derivatives to check if they contain
information about the parameters to be identi-
¢ed. The Baranyi model contains four para-
meters, so if it can be shown that the model
parameters can be written as a combination of
any four derivatives of the Taylor series expan-
sion, the structural identi¢ability of the model
is proven.

Let the model be denoted by f�t� and
(dif=dti��0� by zi, then it can be proven that the
four parameters can be written as a combina-
tion of the zi's:
mmax �
����������������������������������
z42 � 3z23 ÿ 2z2z4

q
z2

h0 � ln�2�
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This analysis demonstrates that the Baranyi

model is structurally identi¢able, showing that
this model structure will lead to identi¢able
parameters in the case of an ideal set of data.

Practical identi¢ability

Now that we know that the Baranyi-model is
structurally identi¢able, the question remains
what the identi¢ability properties are when
using actual data. Real-life data will always
contain a certain level of noise, having its im-
pact on the parameter estimation process. The
question to be asked here is if it is possible to
give the parameters unique values with actual,
experimental data. Some theoretical back-
ground on parameter estimation of nonlinear
models is necessary to explain the methods
used and can be found in Appendix A.

Fitting the Baranyi model to an experimental
dataset

Applying the nonlinear estimation technique
outlined in Appendix A, the Baranyi model
was ¢tted to a Salmonella enteritidis growth
curve.The environmental conditions remained
the same for the curve, which was generated at
308C in egg yolk. The data consists of 18 data
points and is summarized in Table 1.

The model was ¢tted to the data using the
Levenbergh^Marquardt algorithm tominimize
the objective function (Press et al. 1992). The
experimental growth data, together with the
¢tted Baranyi curve is shown in Fig. 1.



Table 1. Salmonella enteritidis growth curve in
egg yolk at 308C

Time (h) ln (cfu / ml)

0 2?833213
2 2?079441
3 3?135494
4 4?49981
5 6?46614
6 4?66343
7 7?91935
8 7?80384
9 9?48797
10 11?1941
10 11?9703
12 13?1283
13 14?2792
14 13?641
15 16?3412
26 21?2885
27 21?0009
28 21?0009

Figure 1. The ¢tted Baranyi-model to the Salmo-
nella enteritidis growth curve.
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The 95% con¢dence intervals indicate that
all parameters can be estimated signi¢cantly
(Table 2). It is clear that the parameter h0 has
the largest boundaries on the interval, i.e. it
has the largest estimation error. It must be
added that this type of analysis is strictly
only valid for linear models with normally
distributed measurement errors. Since the lag
Table 2. Parameter estimates and statistical prope

Estimate Standard error C

mmax 1?089 0?064
h0 2?657 1?051
y0 2?364 0?646
ymax 21?097 0?446
time l has to be deduced from h0, there is quite
a large uncertainty on l, which has been
previously reported (Baranyi and Roberts
1994,Wijtzes et al. 1995). Using the relationship
h0 � lmmax the calculated lag time is 2?441 h
with a standard error of 3?970 (as calculated
from the general law of variances).

The correlation matrix of the parameter esti-
mates shows that the parameter estimates are
moderately correlated between one another.
The mmax and h0-estimates show a relatively
high correlation of 0?75.

mmax h0 y0 ymax

mmax 1 0�752 0�268 0�00344
h0 0�752 1 0�803 ÿ 0�00202
y0 0�268 0�803 1 ÿ 0�000645
ymax 0�000344 ÿ 0�00202 ÿ 0�000645 1
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More important than the individual con¢-
dence intervals is the joint con¢dence region,
obtained by varying all the parameters simul-
taneously. As was shownbefore, this joint prob-
ability region is a hyperellipsoid, and can only
be graphically represented for a maximum of
three parameters. Some insight in the shape of
the hyperellipsoid can be obtained with the
projections of the probability region on the two
dimensional parameter subspaces. This gives
contour plots showing lines of equal value as
shown in Fig. 2, summarizing all the possible
parameter combinations. It can be seen that
the con¢dence region does not show strong
nonlinear shapes for any of the parameter com-
binations. However, for some combinations the
ratio of the large axis to the small axis is rela-
tively far away from one (circular contours).
The length of the ellipse axes is proportional
to the eigenvalues of the Fisher matrix.
The closer the eigenvalue ratios are to one,
the better the identi¢ability properties of the
model for the particular dataset.

Following the approach of Ratkowsky (1983),
the linear behaviour of the parameter estimates
rties

oe¤cient of variation 95% con¢dence limits

0?252 {0?951, 1?228}
1?678 {0?404, 4?915}
1?159 {0?979, 3?740}
0?0897 {20?141, 22?052}



Figure 2. Contour plots of the objective function as function of the model parameters.
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was assessed by comparing the maximum rela-
tive parameter-e¡ects curvature with the 95%
con¢dence region relative curvature. If the
¢rst curvature measurement is small com-
pared to the latter, the estimates are said to
behave nearly linear.This is important to eval-
uate the validity of the statistical tests that are
based on the linear approximation of the
nonlinear model, such as the standard error
of the estimates. The maximum relative para-
meter-e¡ect curvature had a value of 0?574,
while the 95% con¢dence region relative
curvature had a value of 0?567. The condition
of linearity is not met, although the di¡er-
ence is rather small. This means that one
has to be careful interpreting the regression
statistics.

Sensitivity functions

The output sensitivity functions are the major
components of the Fisher matrix, and a fortiori
of the covariance matrix, so they are key compo-
nents of practical identi¢ability analysis. If the
sensitivity equations are proportional, the cov-
ariance matrix is singular and the model is not
practically identi¢able (Robinson 1985). If they
are nearly proportional, the parameter estima-
tions will be highly correlated. Plotting the sen-
sitivity functions can therefore give a quick
indication about identi¢ability problems. The
sensitivity functions of the Baranyi model are
calculated by taking the partial derivatives of
the model to the four parameters, respectively:
qy

qmmax

�

ÿ eh0�t�mmax�ey0 ÿ eymax�t
�ÿ1� eh0 � et�mmax��ÿey0 � eh0�ymax � ey0�t�mmax�

qy
qh0
�

eh0�ey0 ÿ eymax� �ÿ1� et�mmax�
�ÿ1� eh0 � et�mmax� �ÿey0 � eh0�ymax � ey0�t�mmax�

�3�
qy
qy0
� e�h0�ymax�

ÿey0 � e�h0�ymax� � e�y0�t�mmax�
qy

qymax
� ey0�ÿ1� et�mmax�
ÿey0 � e�h0�ymax� � e�y0�t�mmax�

As illustrated here, for nonlinear models,
the sensitivity functions are dependent on the
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model parameters (Draper and Smith 1981).
Figure 3 shows the evolution of the di¡erent
sensitivity functions with time, using the esti-
mated parameter values.

As stated before, when two or more sensitiv-
ity functions are proportional to each other,
then the model is not identi¢able. In this case
�qy=qy0� and �qy=qymax� are linearly correlated,
but they are not proportional because an inter-
cept exists if a linear regression is performed
between them. Visual inspection may be mis-
leading as we are looking for linear combina-
tions of sensitivity functions and they may not
appear straightforwardly. Linear analysis may
help in this.

The sensitivity functions show at what times
the parameters are most sensitive to the mea-
sured data. This means that the information
content of an experiment can be increased by
sampling at times when the sensitivity func-
tions have the highest values (Vialas et al.
1985).This principle is very important for opti-
mal experimental design, as will be illustrated
in the next sections.
Figure 3. Sensitivit
Optimal experimental design for parameter
estimation (OED/PE)

In the framework of predictive microbiology
and quantitative risk analysis, two ¢elds in
food microbiology that require extensive use
of mathematical models, it is important that
the model parameters, which have a clear phy-
sical meaning, are knownwith the most statis-
tical signi¢cance. It warrants the best use of
experimental resources to produce the most
informative experiments.

OED/PEmethods use the Fisher information
matrix F as a starting point because it sum-
marizes all information on the preciseness
and correlation of the parameter estimates.
Several design criteria have been worked out
(Godfrey and Di Stefano 1985).The most widely
used is the D-optimal or minimum volume
design criterion which aims at maximizing
the determinant of F, equivalent to minimizing
the geometric mean of the identi¢cation error.

Optimization of an experiment can only be
done when the experimenter has a certain
ies as function of time.
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degree of freedom available to improve the ex-
perimental conditions. In this study, only the
number of sample points and the timing of the
samples are considered. Optimal experimental
design then reduces to ¢nding the optimal
sampling times to obtain the most reliable
parameter estimates. This is equivalent to an
optimization problemwith the same dimension
as the chosen number of data points.

Optimizing the sampling frequency

In order to improve the accuracy of the para-
meter estimates, the growth curve can be repli-
cated.The aim of the OED/PE method outlined
here is to use the available information opti-
mally to do such a replication.There is a need
for a priori parameter estimates because F is
dependent on the parameter values. This prior
information can be available from previous
experiments, literature data, extrapolation or
some other source of data. A change in the cho-
sen experimental degree of freedom, here the
sampling times, will result in a di¡erent value
of F. Following the D-optimal criterion the de-
terminant ofF is then to be maximized as func-
tion of the sampling items. The maximization
was achieved using the multi-dimensional opti-
mization algorithm of Brent (Brent 1973). The
only constraint imposed on the optimization
Table 3. The optimal sampling times xi according

No. of samples 4 7 1

det(F) 115?3 922?3 310
x1 0 0
x2 4?8 4?74
x3 17?31 4?8
x4 28 17?31
x5 17?31
x6 28
x7 28
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
made sure that the sample points could not ex-
ceed the preset experimental range. The num-
ber of sampling points had to be known in
advance. In order to assess the in£uence of the
number of samples, the optimization exercise
was accomplished for several sampling
numbers.

Results

Although the optimization of the D-optimal
criterion is in essence a nonlinear optimiza-
tion problem, there was no evidence of local
optima in the response of the objective func-
tion.The optimization results are summarized
in Table 3. It can be seen that the criterion has
steadily larger values for larger number of data
points, which is perfectly logical as the infor-
mation content is a sum of squares (JTJ). It is
obvious that there are four optimal sampling
times emerging from the optimization, irre-
spective of the number of sample points.
Looking to Fig. 3, we can see that they roughly
coincide with the maximum absolute values of
the sensitivity functions for the four para-
meters. The D-optimal criterion points to
experiments with sampling on only four
positions, with replacements to increase the
accuracy.
to the D-optimal design criterion

0 12 14 18

8?2 6912 13823?3 34541?8
0 0 0 0
4?56 0 0 0
4?79 4?65 4?62 4?53
4?83 4?78 4?77 4?67
17?3 4?81 4?8 4?79
17?3 17?3 17?3 4?82
17?3 17?3 17?3 4?82
28 17?3 17?3 17?3
28 17?3 17?3 17?3
28 17?3 17?3 17?3

28 28 17?3
28 28 17?3

28 17?3
28 28

28
28
28
28
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Let's denote the four optimal sampling times
as sample point 1, 2, 3 and 4. It can be seen from
Table 3 that points 1, 3 and 4 are quite consis-
tent over the total number of observations,
while point 2 is more spread over time, albeit
the spreading is rather limited. Point 2 is
`related' to h0, which showed the largest uncer-
tainty after ¢tting.

An interesting observation can be made
when looking more closely to the optimization
results.The number of samples at each optimal
sample point are summarized in Table 4. This
gives a feel of the importance of each sample
point in terms of experimental information.

Con¢dence limits on the optimal sample
points

It is dangerous to rely completely on sampling
at one time with replacement, because the de-
sign is dependent on the a priori parameter
values obtained by preliminary experiments.
These a priori parameter values are considered
as being the best available by the design criter-
ion. In the OED/PE methodology, no direct
procedure exists for inclusion of parameter
uncertainty in designing an experiment.
The robustness of the optimal design of Table 3
to parameter uncertainty was assessed using
Monte Carlo simulation on the four model
parameters (Weijers and Vanrolleghem 1997).
Conceptually, this means that synthetic data
sets are constructed with exactly the same
number of measurements as the actual data
set by using the Baranyi model (Eqn 1). If there
are su¤cient synthetic data sets, the distribu-
tions for the optimal sample positions can be
obtained and con¢dence limits can be subse-
quently calculated.
Table 4. The distribution of the samples over the
criterion

No. of samples Sample point 1 Sample p

4 1 1
7 1 2
10 1 3
12 2 3
14 2 3
18 2 5
Two series of simulations were done. For
both series, the parameter estimates were
assumed to follow a normal distribution,
truncated at 0 because the parameters must
be positive by de¢nition. For the ¢rst series,
the statistical parameters obtained from the
preliminary estimation (Table 2) were used.
This is a case where the a priori parameter va-
lues are of good quality. For the second series,
the errors on the parameter estimates were
doubled which makes the prior estimates of
poor quality. Note that this would imply that
the h0 estimate would not be signi¢cantly dif-
ferent from 0. The a priori estimate distribu-
tions were sampled using the Latin Hypercube
scheme (LHS) (Vose 1996).

For a large number of iterations, Monte
Carlo simulations can reproduce the true dis-
tribution of parameters of interest, in this case
the optimal sampling times. Because four sam-
pling times emerged as optimal, irrespective of
the total number of samples, the simulations
were done for the case of four sampling times.
The number of iterations was 1000, su¤cient
for reliable results. The sampling points 1
and 4 showed no variation at all, so it is pretty
safe to sample the beginning and the end of the
growth curve at ¢xed times.The histograms for
optimal sample points 2 and 3 are shown in
Fig. 4.The particular shape of the distributions
give an indication what sample times are most
sensitive towards the quality of the a priori es-
timates. From these histograms, the con¢dence
intervals can be calculated using numerical in-
tegration.The 95% con¢dence intervals for the
optimal sampling times are shown in Table 5.
As could be expected, the con¢dence interval
is largest for x2, i.e., the point contributing the
information on h0. Logically, the con¢dence
four sample times as calculated by the D-optimal

oint 2 Sample point 3 Sample point 4

1 1
2 2
3 3
5 2
5 4
6 5



Figure 4. The histograms for the optimal sample points 2 and 3 as determined by theMonte Carlo simu-
lation for the 2 series.

Table 5. The 95% con¢dence limits on the
optimal sampling times

Sample point Series 1 Series 2

1 {0, 0} {0, 0}
2 {3?2, 8?5} {3?6, 10?6}
3 {16?1, 23} {15?5, 23?1}
4 {28, 28} {28, 28}

Table 6. Growth curve sampled at the times
indicated by the OED/PE

Time (h) ln (cfu/ml)

0 3?638
0 3?664
3?8 5?247
4?3 6?116
4?7 5?652
5?6 7?012
6?0 7?832
16?9 19?218
17?1 19?258
17?2 19?734
17?4 19?704
17?6 20?271
17?8 19?662
20 20?060
25 20?120
26 21?001
27 21?060
27 20?760
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limits are wider when the a priori estimate
errors are larger.

Experimental validation of the experimental
design

Based on the results of the OED/PE
calculations, the original growth curve was
repeated using the same number of sample
points (Table 6).

Following the results shown in Table 4, two
points were measured at sampling time 1, ¢ve
at sampling time 2, six at sampling time 3 and
¢ve at sampling time 4.The Baranyi model was
¢tted to this data using the procedure
described before (Fig. 5).The estimation results
clearly indicate better properties for the para-
meter estimates (Table 7).
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The standard error was reduced by more
than half for all the parameters.The parameter
estimates are somewhat less correlated, as can
be seen from the correlation matrix.

mmax h0 y0 ymax

mmax 1 0�634 0�08684 ÿ 0�326
h0 0�634 1 0�733 ÿ 0�108
y0 0�0868 0�733 1 ÿ 0�00409
ymax ÿ 0�326 ÿ 0�108 ÿ 0�00409 1
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Not only are the estimation errors reduced,
the parameter estimates show much more line-
ar behaviour as can be seen from the curvature
measurements (maximum parameter-e¡ects
relative curvature= 0?370, 95% con¢dence
region relative curvature= 0?566). This means
that the regression statistics can now be more
con¢dently used.

This example clearly shows that, although
the a priori parameter estimates are of good
quality, they can be further improved by using
the OED/PE procedure to do a replicate.
Although the number of sample points is the
same as for the original curve, the experimen-
tal e¡ort is considerably less, because sampling
is clustered at four time intervals only. Even
when the prior information is of poorer quality,
Table 7. Parameter estimates and statistical prope

Estimate Standard error C

mmax 1?110 0?0242
h0 2?781 0?381
y0 3?649 0?244
y 20?635 0?158

Figure 5. The Baranyi-model ¢tted to the
Salmonella growth curve sampled according to the
optimal experimental design.
the Monte Carlo simulation procedure should
give the best possible guarantee that the
most interesting time zones are sampled while
taking the initial uncertainty into account.

Discussion

The aim of this paper was to study the identi¢a-
bility of the model of Baranyi for bacterial
growth. It could be shown that the model has
attractive identi¢ability properties, both struc-
turally and practically. However, the relatively
high correlation between mmax and h0 and the
larger variability of the h0-estimate for theSal-
monella enteritidis growthcurve show potential
identi¢cation pifalls.The variability of h0 (and
thus l) has been reported in the literature, and
seems to be di¤cult to avoid. Besides the inher-
ent variability of microbial growth, the lag
time is dependent on the history of the culture
under study, a history that is sometimes very
di¤cult to assess and quantify. Only for very
controlled experiments can this aspect be ex-
pected to be kept within bounds. For real-life
cases such as used for quantitative risk analy-
sis, the variability of the lag phase (estimation)
should be accounted for in the analysis.

The D-optimal design criterion proved to be
an e¤cient way to improve the reliability of mi-
crobial growth parameter estimates and hence
of the predictions made by the model. The
criterion consistently pointed towards four
important time regions, each corresponding
with one of the four model parameters.The ro-
bustness of the design to the preliminary para-
meter estimates was quanti¢ed with a Monte
Carlo simulation, using Latin Hypercube sam-
pling of the model parameters. This made it
possible to construct 95% con¢dence intervals
of the optimal sample points. It was not possible
to determine the optimal number of data points,
but this should be based on the uncertainty
rties for the resampled growth curve

oe¤cient of variation 95% con¢dence limits

0?0926 {1?059, 1?163}
0?579 {1?966, 3?596}
0?284 {3?124, 4?173}
0?0325 {20?296, 20?975}
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of the a priori measurements and the expected
variability of the measurements which is re-
£ected in the Monte Carlo distributions.

Optimal experimental design can help to use
resources more optimally. Of course, prelimin-
ary parameter estimates are necessary for ex-
perimental design, so that the example shown
here using the sampling scheme as only degree
of freedom seems somewhat redundant. There
are situations, however, where the principles
shown in this paper could be very useful.When
the identi¢cation process is giving di¤culties
with parameter estimates and replication ex-
periments have to be done or when preliminary
information is available on parameter values it
could be very bene¢cial to have an ideawhen to
measure the growth curve. It has also to be
kept in mind that other degrees of freedom
could be chosen. If the in£uence of environ-
mental conditions, such as temperature or
water activity, is investigated, the above out-
lined principles can be applied as well. Current
practice in predictive microbiology is to mea-
sure microbial growth curves at constant
environmental conditions, and change e.g. the
temperature on a per curve basis.The in£uence
of the environmental conditions on the model
parameters is then modelled separately from
the growth model, such as the temperature
square root model (Ratkowsky et al. 1983). It is
clear that this requires considerable exper-
imental e¡ort (McMeekin et al. 1993), and
maybe it could be more bene¢cial to estimate
the environmental related parameters directly
using the di¡erential equation form of the
Baranyi model.Van Impe et al. (1992) suggested
an experimental procedure for estimating the
model parameters of a Gompertz-type model
on dynamic data. Further research on the iden-
ti¢ability properties of the model could point
in the right direction, whereby it has to be
pointed out that it is no longer possible to cal-
culate the sensitivity functions analytically,
which complicates the calculations. Promising
results in this ¢eldwere obtained by Bernaerts
et al. (1998) and Versyck et al. (1998), who used
optimal experimental design to improve the
identi¢ability properties of temperature de-
pendent models.

Identi¢ability properties of predictive
microbiological models have not always got
the attention they surely deserve. The example
presented here shows that identi¢ability analy-
sis can help in optimizing experimental e¡orts
and reduce parameter variability. Although
the paper focused on the Baranyi model, the
principles are generally valid and it seems ad-
visable that a similar investigation is done on
other popular microbial growth models, such
as the modi¢ed Gompertz model.
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Appendix A

Parameter estimation of nonlinear models

Consider the following general notation of a
nonlinear model:

y � f�x; b� � E �4�
with

. y the measured response variable

. f the nonlinear model function

. x the vector of independent variables
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. b the vector of Pmodel parameters

. E the experimental error

Suppose n experiments are available. When
the experimental error has zero mean and con-
stant variance and is independently distribu-
ted, an unbiased estimate b for the parameters
b is determined by minimization of the sum of
squares of residuals:Xn

i�1
�yi ÿ f�x; b��2!b min �5�

The minimization is done in an iterative way
and yields the vector of parameter estimates:

b � �JTJ�ÿ1JTy �6�
With J the Jacobian matrix, containing the

derivatives of the model to the parameters eval-
uated in the n experimental points.

An estimate of the covariance matrix V of
the parameter estimates is calculated from
(Froment and Bisscho¡, 1990):

V̂ � �JTJ�ÿ1�2 �7�
The experimental error variance �2 is esti-

mated by:

s2 �
Pn

i�1 �yi ÿ ŷi�2
nÿ p

�8�
The matrix JTJ is called the Fisher informa-

tion matrix (Vanrolleghem and Dochain 1998)
and is central in the analysis of the practical
identi¢ability. The joint con¢dence region of
the parameter estimates is given by (Froment
and Bisscho¡ 1990):

�bÿ b�TJTJ�bÿ b� � d �9�
with d depending upon the probabilitylevel and
the number of degrees of freedom. In the case of
a linear model, this formula represents a closed
hyperellipsoidal surface centered at b. Using
a translation of coordinates and an ortho-
gonal transformation Uv � bÿ b, the hyper-
ellipsoid can be rewritten as:

vT�UTJTJU�v � d �10�
U is an orthogonal matrix with columns that

are the eigenvectors of JTJ. The matrix
UTJTJU is a diagonal matrix with the eigen-
values of the Fisher information matrix on its
main diagonal.This implicates that the axes of
the hyperellipsoid, indicating the error on the
parameter estimates, are proportional with
the eigenvalues of F. This shows why F is cen-
tral in any practical identi¢ability analysis
and optimal experimental design.

Appendix B

Symbols used in text

Roman letters

b Vector of model parameter estimates
F The Fisher information matrix
h0 The product of the lag time l and mmax

J The Jacobian matrix
m Curvature parameter to characterize

the transition from the exponential
phase

s2 Estimate of the experimental error
variance

V The covariance matrix of the parameter
estimates

x The cell concentration [cfu ml71]
x The vector of independent variables
y The natural logarithm of the cell

concentration [ln(cfu ml71)]
y The vector of measured response vari-

ables
y0 The natural logarithm of the initial cell

concentration [ln(cfu ml71)]
ymax The natural logarithm of the asymptotic

cell concentration [ln(cfu ml71)]

Greek letters

b The vector of model parameters
E The experimental error
l The lag time [h]
mmax Maximum speci¢c growth rate [1 h71]
n Curvature parameter
s2 The experimental error variance
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