
International Journal of Food Microbiology 52 (1999) 1–27
www.elsevier.nl / locate / ijfoodmicro

Review

Predictive food microbiology for the meat industry: a review

*Karl McDonald , Da-Wen Sun

FRCFT Group, Department of Agricultural and Food Engineering, University College Dublin, National University of Ireland,
Earlsfort Terrace, Dublin 2, Ireland

Received 17 November 1998; received in revised form 6 May 1999; accepted 4 August 1999

Abstract

Predictive food microbiology (PFM) is an emerging multidisciplinary area of food microbiology. It encompasses such
disciplines as mathematics, microbiology, engineering and chemistry to develop and apply mathematical models to predict
the responses of microorganisms to specified environmental variables. This paper provides a critical review on the
development of mathematical modelling with emphasis on modelling techniques, descriptions, classifications and their recent
advances. It is concluded that the role and accuracy of predictive food microbiology will increase as understanding of the
complex interactions between microorganisms and food becomes clearer. However the reliance of food microbiology on
laboratory techniques and skilled personnel to determine process and food safety is still necessary.  1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction been considered as only giving modest assurance on
product safety in the food chain (Notermans and

Traditionally the microbiological safety of foods Veld, 1994; Baranyi and Roberts, 1995; Roberts,
has been established via challenge tests. These tests 1997).
simulated the effects of environmental conditions on The increasing number and severity of food-
food, in terms of growth and proliferation of spoilage poisoning outbreaks world-wide has increased public
and pathogenic microorganisms. Challenge tests can awareness about the safety of meats (Maurice,
provide data useful in determining the safety and 1994). Public awareness has been stimulated further
shelf-life of food under set conditions. However, by the recent scares of BSE in the UK and Es-
challenge tests have been criticised as an expensive, cherichia coli 0157:H7 in the US and Scotland.
labour intensive, time consuming and non-cumula- Consumer pressure for greater varieties of minimally
tive research tool. More recently challenge tests have processed non-shelf stable and fresh foods has

generated a need to quickly and accurately guarantee
*Corresponding author. food safety. Roberts and Jarvis (1983) challenged
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conventional microbiological methods of assessing critical review on the recent developments in PFM
food safety, as an expensive and largely negative with emphasis on its application and integration into
science. An alternative methodology was proposed in the meat industry
which a greater understanding of microbial physi-
ology and the responses of microorganisms to critical
controlling factors such as temperature would be 2. Microbiology of meats
required. In this methodology specific microorga-
nisms grow in laboratory media, subjected to various Meat is a highly perishable food product which,
environmental conditions with their responses re- unless correctly stored, processed, packaged and
corded. Cumulative databases are built up, and distributed, spoils quickly and becomes hazardous
procedures to interpolate and interact the database in due to microbial growth. Potential for microbial
mathematical models are then developed. This is contamination is influenced by the condition of
made under the premise that these responses to animals prior to slaughter, abattoir practices, extent
environmental conditions are consistent and re- of handling and subsequent storage conditions (Jack-
producible (Ross and McMeekin, 1994). However, it son et al., 1997). All raw meat can have some level
is important to note that modelling normally will not of microbial contamination present and cannot be
show unanticipated microbial responses but it can expected to be otherwise without further processing.
show effects of multiple variables not specifically However, only if spoilage microorganisms such as
tested for (Cole, 1991; Hedges, 1991). Ultimately Brochothrix thermosphacta, Pseudomonas spp., and
challenge tests could be fully or in part replaced by a lactic acid bacteria are allowed to grow to high
methodology which is embraced by the description numbers the meat becomes spoiled and unfit for
predictive food microbiology (PFM) (Whiting, human consumption (Davies, 1992). Depending on
1997). the species and whether they are present, pathogens

PFM is a promising and rapidly developing area of such as Listeria monocytogenes, Salmonella spp.,
food microbiology, which has gained significant and E. coli 0157:H7 can grow and cause illness by
scientific attention in recent years. It encompasses the ingestion of the bacterial cells themselves or
such areas as mathematics, engineering, chemistry from toxins that they produce. The presence of
and microbiology to give microbial behavioural pathogens in the food supply in low numbers is
predictions in specific foods under defined conditions undesirable and is considered a major cause of
(Zwietering et al., 1990, 1993; Whiting and Buch- gastrointestinal disease world-wide (Buchanan and
anan, 1994; Peleg, 1997; Schaffner and Labuza, Whiting, 1986).
1997). In the last 15 years, with the advent of Within the meat industry, assurance of meat safety
personal computers its real potential and application and quality are of paramount importance. As the
as an assistive tool to the food industry has been industry develops new technologies to produce high-
realised. However, despite the progress made by er quality and diverse meat products for increasingly
PFM it remains primarily a research rather than an competitive markets, systems must be designed to
industrial tool. The reasons for this vary but a major allow safeguards to be implemented into processing
problem is that models are often validated against procedures. Traditional approaches to meat safety
growth of specific organisms in laboratory media and quality have relied heavily on regulatory inspec-
under specific conditions (McMeekin et al., 1987). tion and sampling regimes. However, these systems
Models can then have difficulties in making accurate cannot guarantee total consumer protection unless
predictions from actual food products. As Gill 100% inspection and sampling are employed. In the
(1982) indicated, variation is inevitable with com- meat industry, this level of inspection is impractical
plex foods such as meat. Validation of models with for various economic and logistic reasons (Armitage,
data from specific meat products is, therefore, rec- 1997).
ommended (Houtsma et al., 1996). In addition, the The combination and interaction of the intrinsic
judgement of a trained experienced microbiologist and extrinsic factors determines the microbiology of
will not become redundant by predictive microbiol- meat. Table 1 lists most of these factors. Among
ogy (Giannuzzi et al., 1998). This paper provides a them some factors are especially influential to micro-
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Table 1
Some intrinsic and extrinsic factors affecting microbial growth

Intrinsic factors Extrinsic factors

pH, acidity, acidulant identity, Temperature
% buffering power
Water activity and content, Relative humidity
humectant identity
Redox potential Light intensity and wavelength
Presence of antimicrobials Atmospheric gas composition

and ratio
Identity and distribution of Packaging characteristics and
natural microbial flora interactions
Presence of physical structures Processing characteristics and

interactions
Presence of biological structures Storage, distribution and

display considerations
Availability of nutrients
Colloidal form
Substrate surface to volume ratio

bial growth in meats. Table 2 indicates how these 6.5) and readily available sources of energy, carbon
factors can influence the production of cured cooked and other nutrients, makes them ideal for most
meats. The intrinsic nature of most raw meats with microbial growth (Varnam and Sutherland, 1985).
high water activities ( . 0.98), moderate pH (5.5– The most important factor influencing microbial

Table 2
Some intrinsic and extrinsic factors affecting microbial growth in perishable cooked, cured meats

Factors Affected by

Intrinsic
pH Type and level of carbohydrate addition,

such as sugar allowing lactic floral growth,
use of acidulants or phosphates

Water activity Salt from brine solution and presence of
sugars can alter water activity. Initial and
final moisture contents of meat

Antimicrobials Residual nitrite in final product affected by
product pH, temperature and times of
processing and storage, iron level of
product, growth of nitrite depleting
microbes. Level of salt added in cure
Use of ascorbate, phosphates or other
additives, such as smoke flavours

Initial microbial flora Type of meat used, slaughtering techniques
employed, handling, staff hygiene training,
good manufacturing practices

Extrinsic
Processing parameters Method of cooking and cooling with times

and temperatures achieved
Storage, distribution and Time, temperature, relative humidity,
display conditions packaging and atmosphere histories
Microbial flora Type and level of natural microbial flora

remaining in the product after processing
or due to post-process contamination
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growth is temperature and it is the primary extrinsic chosen microorganism. For example, one could test
controlling factor. This is evident in most Hazard the contribution of interacting variables such as pH,
Analysis Critical Control Point (HACCP) systems acid type, water activity and temperature on the
for meat products where temperature is a Critical growth of a starter culture in a fermented meat
Control Point (CCP) (ICMSF, 1988). For example product and identify the component that least or most
with the preparation of cooked cold meat, cooking is affects growth. This can facilitate optimisation of the
immediately followed by refrigeration. Governments process procedures since it allows engineering of the
often provide guidelines or regulations to govern parameters to give most benefit in terms of cost,
temperature and time necessary in such operations quality and convenience (Zwietering and Hasting,
(Anonymous, 1989, 1991; Gaze et al., 1998). The 1997b). Leistner (1985) introduced the concept of
rapid cooling of carcasses, subsequent refrigerated hurdle technology for meat products. The approach
storage and adequate cooking procedures are essen- allowed the safety of meat to be guaranteed while
tial in reducing bacterial growth, increasing shelf-life maintaining a consumer acceptable product (Leis-
potential, quality and safety of meats (Hayes, 1985; tner, 1985, 1986). However, some intrinsic factors
Smulders and Eikelenboom, 1987). such as ingredient composition will be outside the

The consequences of current and future tech- control of a meat producer because of legislative
nological operations in meat production are altera- requirements or customer expectations. In these
tions in chemical, physical and microbiological cases, use will have to be made of extrinsic controls
properties of the meat. These alterations can select such as packaging atmosphere and storage tempera-
for a dominant microbial population or species in a ture (Gibbs and Williams, 1990).
meat product. Increasing consumer trends and cater- Despite the recent improvements in meat pro-
ing interest towards minimally processed and addi- duction, cases of food poisoning world-wide con-
tive free product has increased potential risks associ- tinue to rise in most countries (Kuhn, 1999). New
ated with pathogenic growth. As there is a great procedures such as modified atmosphere packaging
diversity of microorganisms found on raw meats, still require careful temperature control throughout
processing can reduce microorganisms to a com- the whole distribution chain. Products such as fresh
monality of well-adapted and safe organisms. How- meats often have extended shelf-life due to modified
ever, a change or failure in the control system can atmosphere packaging. The use of this technology to
allow the emergence or re-emergence of a pathogen retard the growth of rapidly growing spoilage organ-
(Miller et al., 1998). How PFM can deal with such isms needs to consider the danger posed by slow
an event remains to be seen. growing psychrotrophic organisms over longer shelf-

The large variety of meat products with various life. The need for greater improvements in pro-
methods of processing, packaging, storage and dis- duction of meat products requires microbiological
tribution means that there is no single microbiology techniques to advance along with other disciplines.
for meats. However, microbial responses to signifi- Traditional microbiological methods are normally
cant intrinsic and extrinsic factors, such as tempera- only relevant to the particular conditions under
ture and curing ingredients in a fresh ham, for which they were tested and are, therefore, of limited
example, can be summarised as a simple predictive predictive value (Baird Parker and Kilsby, 1987).
equation and be used to provide objective assess- PFM using mathematical models could overcome
ments of the risks of food borne microbial infection, these limitations and become a very effective part of
intoxication or spoilage in specific circumstances meat production and the prevention of food poison-
(Ross and McMeekin, 1995). ing outbreaks. Unnecessary spoilage of product

Predictive modelling that integrates microbial could be controlled and reduced with its application.
behaviour in meat products has now begun to find
favour with meat process engineers (Van Gerwen,
1999, personal correspondence). Multifactorial 3. Classification of models
modelling that integrates microbial behaviour could
result in an ability to identify the components of A predictive food microbiological model is a
most and least significance to the overall fate of a mathematical expression that describes the growth,
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survival, inactivation or biochemical process of a approach is to model the growth rate of an organism
foodborne microorganism. The area of PFM has and use it to make predictions based on the exponen-
several different model classification schemes. How- tial growth of that microbial population. Another
ever, an absolute classification scheme has yet to be approach is to fit a sigmoid function or curve to a
decided. Uniform use of terminology and classifica- microbial population growth data, and then model
tion of models into groups which have specific the effects of various environmental factors such as
functions makes predictive microbiology a more temperature on this function. Evaluation of this fitted
exact discipline and more user-friendly (Baranyi and sigmoid curve may allow researchers to make predic-
Roberts, 1992). However, only the classification tions about the studied microorganisms in a par-
system proposed by Whiting and Buchanan (1993) ticular food system. In both approaches models are
can group most model types together into primary, constructed by carefully evaluating data collected on
secondary and tertiary based models (Table 3). increases in microbial biomass and numbers, under a
Different classification schemes have their advan- studied criterion of intrinsic and extrinsic parameters
tages and disadvantages. such as temperature, pH or a . This allows re-w

searchers to make predictions about the studied
3.1. Kinetic and probability models microorganisms lag time, generation time or ex-

ponential growth rate (Broughall et al., 1983;
Within predictive modelling, the use of particular Zwietering et al., 1991; Dickson et al., 1992; Van

mathematical functions is a means of classifying Impe et al., 1995).
models. Most importantly a model is kinetically or Kinetic models attempt to explain the time taken
probability based. The choice of approach and the for a specified growth response, in terms of en-
specific application within an approach is largely vironmental variables such as temperature, pH or aw

determined by the type of microorganisms expected (Van Boekel, 1996). Other variables can also be
to be encountered and the number of variables. included such as gaseous atmosphere, redox potential
Kinetic models predict the extent and rate of growth (Eh), biological structure, relative humidity, nutrient
of a microorganism (Buchanan, 1993a). content and antimicrobial properties. Kinetic models

Kinetic models can differ in their approach. One are useful in that they can be used to predict changes

Table 3
aClassification of some models used

Primary models Secondary models Tertiary models
1 18Gompertz function Belehradek model USDA Pathogen

10(square-root model) Modelling Program
2 19Modified Gompertz Ratkowsky model Food MicroModel

11(square-root model)
3 l2 20Logistic model Arrhenius model Pseudomonas Predictor
4 21Baranyi model Modified Arrhenius models Expert Systems

13(Davey or Schoolfield)
5 14First-order monod model Probability models

6Modified monod model
7 15D values of thermal inactivation Z values

16Growth decline model of Polynomial or response
8Whiting and Cygnarowicz Surface models

9 17Three-phase linear model Williams–Landel Ferry model
a 1, Jeffries and Brian (1984), Gibson et al. (1987); 2, Zwietering et al. (1990); 3, Jason (1983), Einarsson and Ericksson (1986); 4,

Baranyi et al. (1993a); 5, Monod (1949); 6, Houtsma et al. (1996); 7, Brennan et al. (1990); 8, Whiting and Cygnarowicz Provost (1992); 9,
Buchanan et al. (1997), Garthright (1997); 10, Belehradek (1930); 11, Ratkowsky et al. (1982); 12, Arrhenius (1889), Labuza and Riboh
(1982); 13, Davey (1989a, 1993a), Schoolfield et al. (1981); 14, Hauschild (1982); 15, Brennan et al. (1990); 16, Draper (1988), Gibson et
al. (1988); 17, Williams et al. (1955), Schaffner (1995); 18, Buchanan (1991); 19, McClure et al. (1994b); 20, Neumeyer (1994), Neumeyer
et al. (1997a); and 21, Zwietering et al. (1992), Voyer and McKellar (1993).
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in microbial numbers with time, even if a controlling gis, 1981; Roberts et al., 1981a–c, 1982; Roberts and
variable, which can affect growth, is changing. Gibson, 1986; Roberts, 1989; Baker and Genigeor-
However kinetic models can be difficult to construct gis, 1990; Genigeorgis et al., 1991; Meng and
as they require many data from microbial counting to Genigeorgis, 1993).
be accumulated (Gibson et al., 1988; McClure et al., It has been argued that the concept of D value is
1994a; Baranyi et al., 1995). Good reviews of kinetic not sufficient and the ratio of spore recovery after
modelling are available (Baranyi and Roberts, 1994, incubation should be considered in calculations used
1995; Skinner and Larkin, 1994; Kovarova-Kovar in thermal processing of food. This is particularly
and Egli, 1998). relevant to low acid meat products, which receive

The use of probability in PFM takes advantage of only minimal heat treatment. Mafart and Leguerinel
the likelihood that a particular event will occur under (1997) presented a model describing the recovery of
prescribed conditions, as that ability to predict likely spores as a function of both heat treatment intensity
occurrences in food systems has obvious advantages. and environmental conditions and an application may
Probability-based models have tended to be used to be found with the model in similar types of meat
model spore forming bacteria such as probability of products.
Clostridium botulinum survival in canned corned Ross and McMeekin (1994) suggested that the
beef (Buchanan, 1993a). The basis for probability traditional division of PFM into probability and
modelling is the relationship between the growth of kinetic models was artificial. They argued that the
microbial cells and the physico-chemical properties two types of model represented opposite ends of a
of the environment (Ross and McMeekin, 1995). spectrum of modelling requirements, with research at
Probability of growth can help a manufacturer make both ends eventually coming together. Many models
informed decisions about a product formulation, to date have concentrated on using kinetic principles
processing, packaging and storage (Roberts, 1997). rather than probability to model the effects of
Probability models are appropriate in instances intrinsic and extrinsic variables particularly tempera-
where toxin production in a food is of concern, but ture on microbial growth rather than survival or
they provide little information regarding growth rate death (McMeekin et al., 1997). In certain situations
(Gibson and Hocking, 1997). However, a problem at growth extremes, no growth can often be observed
with probability is that probability changes with but a small probability of growth can exist (Graham
time, so probability models are in fact a combination and Lund, 1993). Ross and McMeekin (1995) illus-
of both probability and kinetics and that can make trated some problems in PFM, which are of practical
them confusing. implication for application of kinetic models. Of

Since the early 1920s, the canned food industry particular concern to meat products for example
has made use of thermal destruction models to assess would be difficulties in obtaining accurate data on
the risk of Cl. botulinum toxigenesis (Brennan et al., environmental conditions such as temperature at all
1990). Standard thermal processing of low acid stages of production, particularly chilling of carcas-
canned food requires a first-order kinetics heat ses (Gill et al., 1991a,b). Variability of microbial
inactivation model with a 12-decimal reduction response times such as lag phase can also present
(12D) of Cl. botulinum spores or 1218C/15 psi for problems (McMeekin et al., 1989). Therefore, the
15 min (Baker, 1993). However, many meat prod- implication of kinetic model application is that
ucts would be completely inedible even after 1 min microbial variability increases with increasing re-
at 1218C (Baker and Genigeorgis, 1993). Products sponse times, thus increasing the confidence limits
such as canned luncheon meats normally receive associated with predictions (McMeekin et al., 1997).
only a mild heat treatment but remain shelf stable However Ratkowsky et al. (1996) indicated that if
due to incorporation of nitrites, salt and other the probability distribution of the response time is
ingredients to inhibit Cl. botulinum spore growth or known, it is possible to determine the probability that
toxin formation (Genigeorgis, 1986). The use of D an organism will grow more quickly than a predicted
values as a response variable merely describes the response. Therefore, kinetic models can describe
effects of thermal processing. Pioneering work on consistent microbial growth responses, but under
probability models has been carried out in both the certain conditions, a probability model may be
UK and US. (Genigeorgis et al., 1971a,b; Genigeor- necessary. At near growth limiting conditions a
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kinetic modeller has to consider the probability of a cal consequence and simply describe data under
predicted growth rate, or no growth (Ross and experimental conditions in the form of a convenient
McMeekin, 1995). mathematical relationship (Gibson et al., 1987).

Ratkowsky and Ross (1995) hypothesised that a Polynomial equations are the common empirical
kinetic model could be used to generate a probability models. These models are easy to use, straight-
model to describe the growth/no growth area. A forward and no knowledge of a particular process is
logistic regression model to define the probability of required (Whiting, 1995). However, polynomials
growth for several conditions including pH, tempera- often have no theoretical foundation and are non-
ture, salt and sodium nitrite was proposed. A linear, which are valid only for the range of variables
Belehradek kinetic model was used with data for the of the underlying data and have numerous parame-
observable growth of Shigella flexneri over a 24-h ters without biological meaning. Therefore, polyno-
period. From the model, the boundary between mials models do not contribute any knowledge to
growth and no growth at a particular level of mechanisms underlying a process. (Draper, 1988;
probability could be estimated. However, the model Delignette-Muller et al., 1995).
was limited by the use of data, which was not based Understanding underlying mechanisms governing
on growth/no growth conditions. cellular metabolism, which produces data, may in

Presser et al. (1998), supported the above hypoth- time allow the construction of mechanistic models.
esis (Ratkowsky and Ross, 1995). However, unlike Models such as this will represent that mechanism
the former actual growth/no growth data was used to more accurately and will serve as a vehicle for
differentiate the ability of E. coli M23 to grow or not generating predictions from hypotheses (Bazin and
grow under specified environmental conditions. The Prosser, 1992). Interpretation of the modelled re-
joining of kinetic and probability approaches can be sponse in terms of known phenomena and processes
seen as an integration of kinetic and probability may then be possible (Krist et al., 1998). Baranyi
models to PFM and a unification of PFM and the and Roberts (1994) indicated that mechanistically
hurdle concept (Ratkowsky and Ross, 1995). How- derived models would be easier to develop further,
ever, the reasons for the apparent link between as the quantity and quality of information from the
kinetic and probability models are still unclear analysed system increases. However completely
(Presser et al., 1998). Ratkowsky and Ross (1995) mechanistic models, which incorporate all intrinsic
concluded that the suggested link between the and extrinsic variables, that affect growth, have not
models might have been an artefact resulting from been developed (Labuza and Fu, 1993; Ross et al.,
using time-limited kinetic data to test a probability 1993).
model. Models describing the growth/no growth Most researchers agree that mechanistic models
area could be very beneficial to the meat industry. are inherently superior to empirical models for the

Products could be formulated having minimum above reasons (Van Impe et al., 1992, 1993;
requirements for preservation while satisfying con- Zwietering et al., 1993). Currently available models
sumer preferences (Presser et al., 1998). Houtsma et are either empirical or semi-mechanistic (Table 3). If
al. (1996) described the combined effects of tem- these models are to be continued to be used, it is
perature, pH and sodium lactate on the growth of advisable that models are developed which reflect
Listeria innocua in bologna sausage, in the area that current knowledge of microbial dynamics and are
allowed for growth up to the minimum inhibitory constructed to provide qualitative data (Baranyi et
concentration of sodium lactate. In this way, it was al., 1996a). However, with the use of more precise
possible to discriminate between growth and no microbiological techniques, the demand for empirical
growth and estimate time in which growth might growth models may decrease (Whiting, 1992).
occur under specific conditions (Houtsma et al.,
1993, 1994). 3.3. Primary, secondary and tertiary models

3.2. Empirical and mechanistic models Davey (1992) called for a terminology for models
to give express meaning to model description and

Empirical models such as the Gompertz function development. Whiting and Buchanan (1993) in re-
(Jeffries and Brian, 1984), are concerned with practi- sponse and understanding the necessity to avoid
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confusion proposed a new classification system for biology an easily accessible and powerful tool to all
PFM according to specific criteria under three levels areas of food industry and research (Buchanan,
of primary, secondary and tertiary models. 1993b; Whiting and Buchanan, 1993, 1994; Whiting,

Primary models describe the change of the bacteri- 1995).
al number with time under particular environmental There are several microbial modelling software
and cultural conditions. Response can be measured packages currently available. In the US, the Depart-
directly by total viable count (TVC), toxin forma- ment of Agriculture (USDA) Food Safety Research
tion, substrate level or metabolic products or in- Unit has developed the Pathogen Modeling Program.
directly by absorbance, optical density or impedance. This software uses multivariant models based on the
If a bacterial growth curve is monitored by recording use of the Gompertz function in combination with
how its TVC changes with time the data collected response surface analysis. It was developed using
can be plotted using a primary model. This can then extensive experimental data on the behaviour of
generate information about the microorganism such microorganisms in liquid media (Buchanan, 1991,
as generation time, lag phase duration, exponential 1993b; Gibson, 1997, personal correspondence). The
growth rate and maximum population density (Whit- new version of the software issued in January 1998
ing, 1995; Whiting and Buchanan, 1993, 1994). contains a growth model for Clostridium perfringens,

Secondary models describe the response of one or thermal inactivation model for Cl. botulinum and
more parameters of a primary model (lag phase gamma irradiation models for Salmonella, E. coli
duration) changing to one or more changes in O157:H7 and normal flora in meats as new features
cultural or environmental conditions (pH, a , Eh, (Whiting and Buchanan, 1997).w

temperature). For example, if the effects of tempera- The United Kingdom’s Ministry of Agriculture,
ture on the growth of Salmonella typhimurium on Fisheries and Food (MAFF) has created the Food
beef between 15 and 408C were being investigated, MicroModel software package which was launched
the organism would be grown at a number of in 1992 (McClure et al., 1994b). This modelling
temperatures in this range. From each temperature, a software uses the results of predictive microbiologi-
generation time can be calculated by using a primary cal research in the context of an expert system (Adair
model. These data is then collated using a secondary and Briggs, 1993; Jones, 1993; Voyer and McKellar,
model, so that effect of temperature is described by a 1993). The Food MicroModel provides a range of
mathematical equation. This allows the end user to predictive models for at least 12 implicated food-
determine what generation time will be observed at a borne pathogens.
temperature T (Dickson et al., 1992; Whiting and Although wide ranges of variables affect microbial
Buchanan, 1993, 1994, 1997; Whiting, 1995; Gibson, growth in foods, models are based primarily on the
1998, personal correspondence). major determinants of microbial growth temperature,

Tertiary models basically take modelling to its pH and water activity, with data for model genera-
final form. They are applications of one or more tion collected using laboratory media (McClure et
primary and secondary models, incorporated into a al., 1994b; Anonymous, 1995). Validation of models
user-friendly computer software package. These for use in food was achieved by comparing the
models are incorporated into various function inte- predicted behaviour for each organism against data
grators such as temperature, a or pH. A time/ found in literature for that organism in foods. Wherew

function integrator history of a product can then be literature was insufficient, experiments were con-
used in conjunction with the secondary model to ducted specifically for this purpose of validation
determine the extent and rate of growth of the (McClure et al., 1994b). Validation of a model in the
organism. Microbial responses to variable conditions prediction of growth in a food is based on generation
and the comparison and contrasting of these effects time and time for a specific change in numbers. Lag
on several species of microorganism can also be time models are generally not validated as ex-
undertaken, using a pertinent database. End users of perience has shown that estimation of lag is general-
these systems need not be aware of modelling ly less repeatable than generation time (McClure et
techniques or the underlying primary and secondary al., 1994b).
models used Tertiary models make predictive micro- Recently a new software package has been laun-
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ched, which unlike the others models spoilage pseu- perimental data pertaining to anaerobic growth of S.
domonads rather than pathogens. The Pseudomonas flexneri, neural networks provided better agreement
Predictor was developed by a group of scientists at with the data (Hajmeer et al., 1997). Geeraerd et al.
the University of Tasmania in Australia. The soft- (1998) studied the combined effects of temperature,
ware package is spread sheet based and can be used pH and percent sodium chloride on bacterial growth
to predict the growth of Pseudomonas species. It is in chilled foods and indicated that artificial neural
also capable of quantifying effects of storage tem- networks were a low complex non-linear modelling
perature on dairy products, and it can predict how technique that could accurately describe experimen-
quickly pseudomonads will grow. In addition the tal data in the field of secondary models in predictive
software is able to correlate shelf-life of a product to microbiology. This modelling technique could make
its temperature history. However the Pseudomonas it possible to describe more accurately the interaction
Predictor requires the user to have some computer of intrinsic and extrinsic variables in chilled meats
literacy, which can offset the flexibility of the when compared to more familiar predictive mi-
package (Neumeyer, 1994; Neumeyer et al., 1997a). crobiological models. The model was more accurate

With all these software packages there can be no than the polynomial relationship found in literature.
guarantee that predicted values will match those seen This was explained by the flexible basis functions
in any specific food system. Researchers have used in artificial neural network modelling compared
pointed out the inadequacies in current information to the fixed basis functions of polynomial or any
bases and the need for further research and develop- other linear modelling approach.
ment of predictive modelling software. However Apparently, there are many more modelling forms
research has shown that predictions made with available for describing the same phenomenon. No
various software packages can agree reasonably well system of classification is inherently superior to all
with results from literature or practical experimenta- others. The scheme proposed by Whiting and Buch-
tion. McClure et al. (1997) also found that predic- anan (1993) can simplify the matters. Table 3
tions from the Food MicroModel compared summaries the classification of some models used
favourably with results taken on the effects on according to this scheme.
growth of L. monocytogenes by sodium chloride, pH,
storage temperature, and sodium nitrate. Comparable
results have been seen in other research work, in the 4. Description of main models
comparison of challenge test results and predictions
made using predictive microbiological software 4.1. Modelling growth curves and determination of
(Niyoyankana et al., 1995). It was indicated that the growth kinetic parameters (primary models)
predictions made by the Pathogen Modelling Pro-
gram and the Food MicroModel gave too high Over the last 10 years, PFM has progressed
growth rates and too long lag phases in predicting rapidly in its application and theoretical basis. The
growth of L. monocytogenes in seafood. The effect identification of primary models describing microbial
of parameters other than those used to obtain predic- growth curves in both broth and food-based systems
tions was postulated as being the source of the errors has helped this progression (Buchanan, 1993a). For
in the predictions. This illustrates that a predictive most meat products temperature is the major variable
models usefulness and accuracy should be product controlling growth rate. Many empirical models have
related (Dalgaard and Vigel Jorgensen, 1998). been developed and compared for predicting growth

Some researchers have proposed the use of as a function of time for a specific temperature. An
computational neural networks for predictive micro- early model describing growth rate is shown below
biology, but little work relevant to their use in (Monod, 1949):
predictive microbiology has been seen. This could be

ktdue to the only recent proposal of its use and the lack N 5 N e (1)0
of appreciable research works in the field (Najjar et
al., 1997). In comparing neural networks with pre- Eq. (1) has been used in predicting vacuum ageing
dictions made by regression equations for ex- periods and shelf-life of refrigerated packaged beef
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(Zamora and Zaritzky, 1985), the effects of modified expression was reparameterised to include three
atmosphere on growth of spoilage flora and L. biologically relevant parameters: the lag time, spe-
monocytogenes on raw chicken (Wimptheimar et al., cific growth rate and the asymptotic value or maxi-
1990), and the influence of temperature and pH on mum bacterial population. The modified Gompertz
the aerobic growth of L. monocytogenes on lean beef expression was found to be statistically sufficient to
and fatty tissue (Grau and Vanderlinde, 1992). describe the growth data of the test organism,
However the disadvantage of the model lies in the Lactobacillus plantarum. In almost all cases, the
fact that the lag time has to be determined from the modified Gompertz expression was regarded as the
data and cannot easily be determined using regres- best model to describe the growth data both in terms
sion (Schmidt, 1992). Besides the lag phase and the of statistical accuracy and ease of use when com-
asymptotic value, the maximum-specific growth rate pared to other sigmoidal functions. Bhaduri et al.
of the growth curve is important. It measures the (1991) used the modified Gompertz equation to
slope of the growth curve when the organisms grow model the non-linear survival curves for L. mono-
exponentially. Normally this parameter is estimated cytogenes heated in liver sausage slurry. It was
by deciding which part of the curve is approximately concluded that for sigmoidal survival curves it is
linear and then determining the slope of this by likely that the equation will give a more accurate
linear regression (Zwietering et al., 1994). The slope prediction of a microbes thermal resistance than a
of the part of the curve judged to be linear is a first order kinetic model such as Eq. (1). The
first-order relationship. modified Gompertz is as follows:

Models for microbial growth curves can also be
m emobtained by non-linear regression techniques. Gibson H F]] GJy 5 A exp 2 exp l 2 t 1 1 (4)s dAet al. (1987) introduced for the first time in food

microbiology the Gompertz function given as fol- At present, the Gompertz function shown in Eqs. (2)
lows: and (4) has become the most widely used sigmoid

curve in PFM due to its simplicity and effectiveness
y 5 A 1 Cexp 2 exp 2 B t 2 M (2)h f s d g j (Giannuzzi et al., 1998). It has been used to describe

growth curves for many organisms including at leastThey then accordingly proposed the use of the
10 foodborne pathogens. Although the Gompertzfollowing logistic sigmoidal relationship to predict
function fits growth data well from the lag throughmicrobial growth:
exponential to stationary phases of microbial growth,
it is not derived from mechanistic considerations.A 1 C

]]]]]]]y 5 (3) The lack of biological basis for the parameters used1 1 exp 2 B t 2 Mh f s d g j
makes interpretation of parameters difficult. The

In the research (Gibson et al. 1987), the Gompertz calculation of lag time with the Gompertz equation
and logistic sigmoidal expressions to model the can be wrongly used as growth can occur before the
logarithm of counts of Cl. botulinum type A in predicted lag time (Marks and Coleman, 1998;
pasteurised pork slurry were compared. The results Marks et al., 1998). Attempts have been made to
obtained using the Logistic function were mostly replace its empirical nature with more mechanistic-
similar to the Gompertz function. However many of based growth models (Van Impe et al., 1992;
the growth curves plotted were asymmetrical. Thus, Zwietering et al., 1994). Consequently, other models
trying to fit the symmetrical logistic expression was are also available (Baranyi et al., 1993b).
inappropriate. The closer fit of the Gompertz expres- Whiting and Cygnarowicz Provost (1992) pro-
sion was preferred. However Wilcox et al. (1993) posed a quantitative four-parameter model for the
showed that growth curves modelled by the Logistic germination, growth and decline of Cl. botulinum,
and the Gompertz functions were indistinguishable. and the growth of L. monocytogenes. The model was

Zwietering et al. (1990) statistically compared constructed by assuming that spore germination, lag
several different modified sigmoidal functions phase or recovery from injury was a first-order
(Logistic, Gompertz, Richards, Schnute, and Stan- process. The models growth rates were found to be
nard) using the t-test and the F-test. The Gompertz 16% less than those derived using the Gompertz
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function. Jones and Walker (1993) developed an parison to the Gompertz function and other models
equation to predict growth, survival and death of that it gives satisfactory results (McClure et al.,
microorganisms based on data obtained using Yer- 1993; Dalgaard, 1995; Sutherland et al., 1995, 1997;
sinia enterocolitica in varying pH and sodium Fernandez et al., 1997; McClure et al., 1997).
chloride concentrations at different temperatures. In Primary models have relative advantages and dis-
contrast to the Gompertz function, this equation has advantages but there is a good general agreement
the capacity to handle growth, survival and death between models for microbial growth (Buchanan and
data and it accurately fitted the growth and decline of Whiting, 1997).
the organism with lower mean square errors than the
Gompertz function. Van Impe et al. (1992) suggested 4.2. Modelling the effects of intrinsic and extrinsic
a dynamic first-order differential equation to predict conditions on growth within a food matrix
both microbial growth and inactivation, with respect (secondary models)
to both time and temperature. This was one of the
first models developed to predict microbial growth Within food matrix microbial growth kinetics
under dynamically changing conditions. Unlike the depend on the effects and interactions of intrinsic
Gompertz function, this dynamic model can take the and extrinsic conditions as listed in Table 1. Manipu-
prior history of the food into account. In conditions lation of one or more of these conditions to a level
of constant temperature within the range of growth, outside the range of growth of most foodborne
the model predictions are the same as the Gompertz microorganisms is typically used in preservation
function. Later a more detailed framework for de- techniques. For economic reasons, using mathemati-
scribing a microbial population under time varying cal models to predict the effects of and integration of
temperature conditions in a consistent way by using variables almost becomes a pre-requisite for manu-
a system theory approach was described (Van Impe facturers. The models used largely depend on num-
et al., 1995). bers of variables and varieties of microorganism

Baranyi et al. (1993c) proposed a dynamic model involved. Normally a probabilistic or kinetic ap-
for predicting microbial growth, combined with an proach is used. Most probability modelling has been
adjustment function A(t) that depended on the phys- centred on assessing the safety of processed meats
iological state of the microbial cells (Baranyi et al., with respect to the germination and production of
1993a–c). This model is as follows: neurotoxins by Cl. botulinum. Studies have dealt

primarily with the probability of growth of the
2y 2y m A (t )max o m ny(t) 5 y 2 ln[1 1 (e 2 1)e ] (5)max organism in cured meats. Hauschild (1982) estimated

the probability that a single spore would germinate
The value of the adjustment function together with and produce toxin in cured meat products, such as
the post-inoculation conditions can predict the dura- vacuum packaged bacon and liver sausage. The
tion of the lag phase. With microorganisms of similar effects of such variables as salt, nitrite, phosphate
pre-inoculation history, the product of the lag phase and sorbate concentration, formulation, processing
and the maximum-specific growth rate is a simple techniques and pH has also been investigated (Haus-
change of physiological state. Estimates of this child, 1982; Genigeorgis, 1986; Roberts and Gibson,
product will then determine how the environmental 1986; Tompkin, 1986; Hauschild, 1989). Some
factors define specific growth rate without the need research has been carried out with poultry products
to model the environmental dependence of the lag (Barbut et al., 1986a,b; Genigeorgis et al., 1991).
phase separately. If the specific growth rate follows Probability of growth can be modelled with a logistic
environmental variations immediately as they hap- probability function and a polynomial equation (Cole
pen, this model can describe microbial growth where et al., 1987):
parameters such as pH, water activity and tempera-
ture change with time, which is found in chilling 1

]]]P 5 (6)s2ndmeat carcasses (Pin and Baranyi, 1998). Many 1 1 e
researchers have used the Baranyi model in specific
microbial modelling applications and found in com- Useful notes on probability modelling can be found
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in literature published by Baker and Genigeorgis The temperature of most meat products is critical for
(1993), Dodds (1993) and Maas (1993). ensuring microbial safety in production and dis-

Modern approaches to PFM have tried to under- tribution. To predict numbers of microorganisms as a
stand and establish a link between growth of micro- function of time and temperature it is necessary to
organisms and regulatory factors such as tempera- model the lag time, specific growth rate and growth
ture. The vast majority of secondary models are yield as a function of temperature. Zwietering et al.
kinetically based (Labuza and Fu, 1993), with the (1991) compared the suitability and usefulness of the
most commonly used models being Arrhenius, modi- Schoolfield model to five other models using L.
fied Arrhenius, square-root and polynomial models. plantarum grown at various temperatures between 6
Kinetic models for shelf-life prediction are generally and 438C. It was found that the Schoolfield model
based on phenomenon occurring and tend not to be described data satisfactorily. However, other models
specific for a particular food. However, the ex- such as the Ratkowsky model (Eq. 11) were statisti-
perimental and environmental parameters of a model cally sufficient, easier to fit and had less parameters.
may be fitted with a particular food. Of these Davey (1989a) used a modified Arrhenius-type
temperature is normally considered the most im- model given below to describe the effects of water
portant, as it greatly affects reaction rates. The activity and temperature on microbial growth rates:
Arrhenius equation was derived empirically based on C C1 2 2w] ]thermodynamic considerations (Labuza and Riboh, ln k 5 C 1 1 1 C a 1 C a (9)0 2 3 w 4T T1982):

Most refrigerated meats would require a significant2EA
]

RT decrease in moisture content to depress water activityk 5 k e (7)0

low enough to have an impact on this equation
In Eq. (7) if values of k are recorded at different (Labuza and Fu, 1993). Products such as dried or
temperatures and if ln k is plotted against 1 /T, a fermented meats, which have depressed water ac-
straight line is formed with slope 2E /R (LabuzaA tivities may find this equation applicable (Van Ger-
and Riboh, 1982; Labuza et al., 1992). However wen, 1999, personal correspondence). However when
bacterial growth is complex and extrapolations of 2wwater activity is non-limiting the C a and C a3 w 4plots may show non-linearity, therefore, Eq. (7) terms can be removed (McMeekin et al., 1992). In
cannot fit data well below optimum or above mini- Eq. (9), all parameters appear linearly and thus
mum temperatures for growth. The plots are normal- estimation can be made using multiple linear regres-
ly only accurate over a limited temperature range for sion. The model was applied to published data
microbial growth (Labuza and Fu, 1993). Fu et al. including that from McMeekin et al. (1987) and
(1991) illustrated this accuracy with Arrhenius plots Broughall et al. (1983), and subsequently described
for Pseudomonas fragi. Others have also found the it well (Davey, 1989a). Duration of the lag phase of
equation entirely inadequate in modelling the re- microbial growth was also modelled and agreed well
sponse variable to temperature in food systems with published results (Davey, 1991). Applicability
(Ratkowsky et al., 1982; Standard et al., 1985; of the model to thermal inactivation of Cl.
Phillips and Griffiths, 1987). botulinum, thiamine denaturation, aerobic /anaerobic

Modifications of Eq. (7) have attempted to im- denaturation of ascorbic acid and combined effect of
prove the fitting of this model at temperature ex- temperature and pH on heat resistance are also
tremes. Schoolfield et al. (1981) reparameterised an described (Davey, 1993a,b). Modified Arrhenius
earlier equation (Sharpe and De Michele, 1977) into models including the Schoolfield and Davey were
a six-parameter non-linear model shown as follows: formulated to overcome the problems and enhance
k(T ) 5 the original Arrhenius models in fitting data at

± microbial temperature extremes. Some authors, whileDHT 1 1A
] H]] ] ] Jr(258C) exp S 2 D describing such models as effective, also point out298 R 298 T

]]]]]]]]]]]]]] their complexity and cumbersome nature (Buchanan,DH DH1 1 1 1L H
] ] ] ] ] ]1 1 exp 2 1 exp 2 1993a).1 1F R T T G F R T T GS D S D] ]

2 2L H The Belehradek model published in 1926 was
(8) almost totally unrecognised in microbiology for
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many years (Belehradek, 1930; McMeekin et al., a parameter to Eq. (11). It was demonstrated thatw

1993; Ross, 1993). Ratkowsky et al. (1982) pro- the model accurately predicted the effect of tempera-
posed the first use of the model in food micro- ture and a on growth rate of Staphylococcusw

biology. The model also known as the square-root xylosus and Halobacterium spp., respectively, on
model is shown below: salted dried fish (McMeekin et al., 1987; Chandler

and McMeekin, 1989a,b). This modified model is as]Œk 5 b T 2 T (10)s dmin follows:
] ]]]]ŒRatkowsky illustrated that Eq. (10) satisfactorily k 5 b T 2 T a 2 a (12)s d s dmin œ w wmin

described the relationship between microbial growth
However, Chandler and McMeekin (1989a) illus-rate and temperature with over 50 sets of growth data
trated that Eq. (12) had no cross-product terms(Ratkowsky et al., 1982) and a further 30 micro-
implying that the parameters acted independently oforganisms in 1983 (Ratkowsky et al., 1991). Pooni
each other. In addition, Eq. (12) could model theand Mead (1984) tested Eq. (10) with other models
growth of Staphylococcus aureus without tempera-to data from 14 published studies on poultry spoilage
ture and a interaction. Adams et al. (1991) modi-wand found that the equation was the most appropriate
fied Eq. (12) for the combined effects of pH andfor predicting spoilage from 22 up to 158C. The
temperature using a variety of acidulants and showedmodel was later successfully used to model the
that growth rate under varying conditions of sub-effects of temperature on bacterial growth rate in
optimal temperature and pH can be predicted usingmeat and raw mutton (Smith, 1985, 1987) and
this modified equation which gave good fits for threeSalmonella in minced beef (Mackey and Kerridge,
serotypes of Y. enterocolitica. This modified equa-1988).
tion is illustrated as follows:Monitoring of meat deterioration due to

] ]]]]mesophilic microbial growth was also carried out Œk 5 b T 2 T pH 2 pH (13)s d s dœmin min
using temperature integrators programmed with rela-

Zwietering et al. (1991) made slight alterations totive rate curves based on mesophilic microorganisms
Eq. (13) by first squaring the complete equation andT values (Gill, 1985; Smith, 1985). The equationmin
also by squaring just T to give homogeneouswas later extended to cover the entire biokinetic min

variances and make it more applicable to tempera-temperature range (Ratkowsky et al., 1983). This
tures above T . Natural logarithm transformedresulted in a new empirical non-linear regression max

variations of Eq. (13) have been applied to themodel shown below:
growth data of Y. enterocolitica. This transformation]Œk 5 b T 2 T 1 2 exp c T 2 T (11)s dh f s d g j has been argued to be more reliable than square-rootmin max

transformation in obtaining homogeneous variances
The terms T and T can be used to classifymin max (Alber and Schaffner, 1992, 1993). McMeekin et al.
microbes in a more objective manner as (1992) suggested that the effects of temperature, awpsychrophiles, mesophiles or thermophiles (Ross, and pH on microbial growth could be described
1993). Ratkowsky et al. (1983) successfully applied together with the following equation that was sub-
Eq. (11) to data from 29 strains of bacteria. Other sequently used successfully on growth data for L.
researchers have also shown that Eq. (11) is reason- monocytogenes by Wijtzes et al. (1993):
ably effective in predicting effects of constant stor-

] ]]]]]]]]Œage temperatures on microbial growth rates (Chan- k 5 b T 2 T a 2 a pH 2 pHs d s d s dœmin œ w wmin min
dler and McMeekin, 1985a,b; Phillips and Griffiths, (14)
1987; Griffiths and Phillips, 1988; Buchanan and
Klawitter, 1992). The effects of fluctuating storage Raccach (1992) used Eq. (14) to model the time that
temperature have been studied by Blankenship et al. Pediococcus spp. took to reach a pH of 5–5.3 in
(1988) who developed a dynamic model for predict- fermented meat products. The ability of different
ing growth of Cl. perfringens in cooked meat chilli cultures of the organism to perform at lower tem-
during chilling using a time-explicit approach. peratures was reflected in different values for Tmin

Various alterations and modifications have been and this allowed the prediction of appropriate inocu-
made to Eq. (11). McMeekin et al. (1987) added a lation levels required to reach a defined pH within a
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specific time. The equation has also been successful- ness of fit (Ross, 1993). Unfortunately no tests are
ly used to describe growth data for L. monocytogenes available for the predictive ability of any of the
(Wijtzes et al., 1993). Modified atmosphere packag- models (Eqs. (9)–(14)) under conditions where
ing is now commonly used with many fresh meat temperature, a and pH change with time, as wouldw

products. There is a need to evaluate and develop occur with moisture loss and post mortem pH decline
models to examine what effects a change in gas in the cooling of meat carcasses for example (Labuza
composition will have on microbial growth kinetics. and Fu, 1993). Interesting and informative discus-
Recently Devlieghere et al. (1999) replaced the pH sions of the advantages and disadvantages of sec-
terms in Eq. (14) with terms to describe for dis- ondary models as well as reviews on their develop-
solved CO in modified atmosphere cooked meats to ment can be found in published literature2

examine the significance of this factor on the max- (McMeekin et al., 1989; Ratkowsky et al., 1991;
imum-specific growth rate of Lactobacillus sake. The Baranyi and Roberts, 1992; Ross et al., 1993; Van
model proved to be useful in the prediction of the Boekel, 1996).
microbial shelf-life of modified atmosphere packed
cooked meats.

Many debates have been generated in comparing 5. Development, data collection and validation
the relative merits of the Arrhenius and square-root of models
type models. Some have indicated a preference for
the square-root model for predicting the effect of 5.1. Development
temperature on microbial growth (Pooni and Mead,
1984; Standard et al., 1985; McMeekin et al., 1989; In the development of a model, it is essential to
Ratkowsky et al., 1991). Fu et al. (1991) concluded know the requirements of the model. Experiments
that both the square-root and Arrhenius models could must be designed in such a way as to make the best
fit the lag phase and growth rate of P. fragi at use of time and resources. Requirements of models
constant temperature. In a comparative assessment of can depend on whether the modeller needs to
eight sets of data for growth of Cl. botulinum in understand the effects of variables on microorga-
cooked turkey, Adair et al. (1989) found that the nisms or the upper and lower limits for preservation
Schoolfield model was a more reliable description of or growth. The inherent variability of both micro-
experimental data. However others indicated that the organisms and meats means that experiments must
procedure used by Adair et al. (1989) to compare the be designed to encompass as much of this variability
models was inappropriate and that the square-root as possible. Many modellers use a mixed culture of
model fitted the data well (McMeekin et al., 1989; the most commonly encountered strains in food for
Ross, 1993). Baird Parker and Kilsby (1987) found their experiments. In this way growth or survival
that Schoolfield model was better than the square- predicted by the model will correspond to the fastest
root model for predicting growth of Cl. botulinum in growing strain present (Ross et al., 1993; Whiting
vacuum-packed minced meat at low temperatures. and Buchanan, 1994). A general strategy outlined for

The relative complexity of the Schoolfield was experimental design for predictive microbial model-
highlighted as a non-investigated variable (Davey, ling is given by (Davies, 1993): (i) define ex-
1989b). Kilsby (1989) advocated the use of models perimental objective; (ii) list all variables; (iii)
showing the best fit to data and thus accuracy over determine the most important variables; (iv) de-
the whole model range must be the most important termine the range for these variables; and (v) find
consideration. Grau and Vanderlinde (1992) demon- microbial optimums or improve understanding.
strated in fitting the growth data of L. monocytogenes Development of predictive microbiological models
on lean and fatty beef by using different versions of has been reviewed in published literature for
the Arrhenius and square-root model, that all models Aeromonas hydrophila (McClure et al., 1994a), L.
were poor in predicting growth rates and lag times monocytogenes (Murphy et al., 1996), Salmonella
on the fatty samples. Square-root models have been enteritidis and E. coli O157:H7 (Blackburn et al.,
described as the most parsimonious of any models to 1997), and spoilage Pseudomonas (Neumeyer et al.,
date achieving parsimony without sacrificing good- 1997a).
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5.2. Data collection validated and this can affect the growth of a specific
pathogen. In these cases, a particular model should

The development of a model requires the genera- be evaluated to ensure its sufficient accuracy (Whit-
tion of data from experimentation. The greater the ing, 1997).
quantity of data collected, the better the accuracy and Since variations are common in complex foods
reliability of the model derived. To fit primary (Gill, 1982), many researchers have expressed the
models and subsequent secondary models, data must need to validate models directly from foods such as
be collected over the entire growth period and often meat (Whiting and Masana, 1994; Walls and Scott,
over a hundred primary growth curves have to be 1996). For example, components present in meat
produced (Bratchell et al., 1989). Multiple variable product formulations but not in laboratory media
experiments can take months to carry out (Gibson, result in changes in the environment of microorga-
1997, personnel correspondence). Methods of data nisms that could significantly affect the extent to
collection vary among researchers but the standard which the environment will support or suppress
method is the total viable count. However, the total growth. Sodium nitrite while stable in a laboratory
viable count is a very labour-intensive method. media is rapidly destroyed by reaction with ascor-
Rapid and automated methods of data collection bate, which is present in many commercial meat
have been used by many researchers (Cuppers and products (Riordan et al., 1998). In validation, greater
Smelt, 1993). However, automated methods can have emphasis should be placed on the practical use of
a larger risk of misinterpretation than total viable models. To encourage greater acceptance and re-
counts (Krist et al., 1998). How data are generated liability from the meat industry will require more
and recorded is imperative to the practical applica- independent and industrial-based validation studies
tion and success of a model (Walker and Jones, under conditions that mimic situations encountered
1993). in normal practice such as decreasing temperature

and a during chilling of meat carcasses (McMeekinw

5.3. Validation et al., 1997).
Validation is often described as an ill-defined

Following model development using experimental aspect of PFM (Ross, 1996). To date no standard
data, a model must be validated in real situations methods for model validation have been published.
(McMeekin and Ross, 1996a). This is critical to However, Ross (1996) provides some indices of
placing confidence in a model (Whiting, 1997). performance for kinetic models to measure their
Validation studies must demonstrate that microorga- reliability. Validated models should be seen as a
nisms behave in similar ways in both the laboratory summary of a large amount of data representing a
and in a real food system. Model validation can be general rule, which may be brought to bear on
carried out by reference to published results (Blac- particular cases (McMeekin and Ross, 1996a). Notes
kburn et al., 1997). However this approach can be on validation can be found in literature published by
limited by insufficient or inappropriate data (Wil- Walls et al. (1996), Walls and Scott (1996, 1997b),
liams, 1992). Many modellers use laboratory media Neumeyer et al. (1997b) and Giffel and Zwietering
to develop and validate models under static con- (1999).
ditions (Adair et al., 1989; Hudson and Mott, 1993;
Walls et al., 1996). Deviations from predictions
using these models are sometimes encountered but 6. Applications of predictive food microbiology
do not necessarily imply that a model is defective
(McMeekin et al., 1997). Users of specific models The rapid development of microbial models and
must be aware of the boundary of model perform- their ability to predict microbial growth makes
ance and understand the applicability of the model modelling an invaluable research tool. Use of models
range. In practice, the issue is not necessarily how can quickly provide information and, therefore, it is
well a model fits data, but the accuracy with which it important to appreciate the real value and usefulness
mimics the microbial response (Jones et al., 1994). of predictive models. It is also necessary to point out
Some foods can contain variables that have not been that their applications cannot replace microbial anal-
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ysis of samples or the sound technical experience temperature during meat production, processing,
and judgement of a trained microbiologist. Many storage, distribution and display is complex. To
applications have been proposed for PFM, which obtain accurate information it is necessary to know
will have relevance to the meat industry. the presence and levels of pathogens present, infecti-

ous dose, pathogen growth kinetics and quantity of
food consumed (Miller et al., 1997). Levels of

6.1. Hazard analysis critical control point microorganisms can change at all stages of process-
(HACCP) ing due to multiple interrelated variables. PFM can

be used to estimate changes in microbial numbers
The acceptance and implementation of HACCP and to allow exposure to a particular pathogen to be

programs in the meat industry requires an ability to assessed. The characterisation of the disease, dose-
deal quantitatively with a range of variables influenc- response assessment and risk characterisation could
ing safety (Buchanan and Whiting, 1996). PFM is a also be aided by PFM (Walls and Scott, 1997a).
quantitative method of describing the effects of these Risk assessment models of meat production and
variables on microbial growth, survival or inactiva- processing have potential in assisting meat produc-
tion. As both PFM and HACCP are still being ers, processors, and regulatory organisations in mak-
developed as food safety aids, predictive models are ing critical food safety decisions that affect public
available that have potential use in the development health (Oscar, 1997). Models have been proposed for
and maintenance of HACCP systems (Elliott, 1996). S. aureus in cooked meats (Walls and Scott, 1997a),
Modelling can help in preliminary hazard analysis, L. monocytogenes in cooked meatballs (Miller et al.,
identification and establishment of critical control 1997), E. coli O157:H7 in ground beef hamburgers
points, and corrective action to be taken. Interaction (Cassin et al., 1998), Salmonella in cooked poultry
between variables such as temperature and a is patties (Whiting, 1997), cooked/chilled food (Buch-w

important in application of HACCP in meat process- anan and Whiting, 1996) and cooked chicken (Oscar,
ing (Broughall and Brown, 1984). However, it is 1997, 1998). Oscar (1997) illustrates that the de-
impractical to determine quantitatively all aspects of velopment of a robust risk assessment model for a
microbial growth kinetics in a complex production meat product can be a complex process with many
process in view of the wide range of variables points requiring careful consideration. However,
involved. Therefore, a combination of PFM and efficiency in quantitative risk assessments results
HACCP offers the meat industry a systematic struc- from using simple models. Phenomena that are not
tured approach of tackling problems, with quantita- quantitatively important should be omitted to prevent
tive calculations when necessary (Zwietering and over complex risk assessments (Van Gerwen and
Hasting, 1997a). PFM can be considered an exten- Zwietering, 1998). The importance of an adequate
sion of HACCP (Roberts, 1989; McMeekin et al., risk assessment program within the total quality
1992). objectives of any company to attain high quality,

profitability and safe meat production while observ-
ing all the legal requirements is particularly relevant

6.2. Risk assessment to meat producers (Serra et al., 1999).

Risk assessment is an analytical tool used increas-
ingly to define priorities for establishing public 6.3. Microbial shelf-life studies
policy (Buchanan, 1995; Foegeding, 1997). The use
of microbial risk assessment in the area of food Predictive modelling that integrates microbial
safety is a newly emerging discipline. Ultimately behaviour with other process variables has begun to
modellers will need to be able to estimate the gain interest within the meat industry for predicting
possibility whether the consumption of food will shelf-life (Banks, 1994). Shelf-life determination is a
cause illness (Anonymous, 1994). However risk complex subject as it is difficult to predict the effects
assessment is by no means easy. Modelling growth of variable storage and abuse conditions that a
and decline under fluctuating conditions such as product may experience (Williams, 1992). The large
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variety and number of spoilage organisms encoun- 6.4. Temperature function integration and meat
tered in meat products means that spoilage models hygiene regulatory activity
are less straightforward to develop than pathogen
models and their application is much more limited The consequences for hygiene and safety of
(Pin and Baranyi, 1998). As with risk assessment perishable products during their short shelf-life can
and HACCP, shelf-life prediction should consider all be estimated or predicted using temperature function
stages in the production of a meat product. Accurate integration (TFI). This technique uses the prior
data must be obtained about raw materials used, temperature history of the product and integrates this
product formulation, product assembly, processing with the temperature-related characteristics of spe-
techniques, hygienic conditions, packaging used, cific microorganisms. Typically TFI can be applied
storage and distribution procedures and final con- to food storage, cooling, distribution or display (Gill,
sumer handling. Only when all these areas are 1996). TFI application in assessing meat cooling
represented will a reliable prediction of shelf-life be processes has been reviewed (Gill et al., 1991a,b;
possible (Dalgaard, 1995; McMeekin and Ross, Gill and Jones, 1992a,b, Reichel et al., 1991). Lowry
1996b). To follow a shelf-life testing procedure can et al. (1989) considered TFI application in determin-
involve extensive utilisation of both technological ing hygienic efficiency of meat thawing operations.
and financial resources. However, development of Skinner and Larkin (1998) illustrated how integra-
accurate predictive models could in the long term ting-type time-temperature indicators can warn food
reduce strain on these resources and improve time processors and consumers about storage conditions
utilisation (Neumeyer et al., 1997a). that may have rendered a food potentially hazardous

Studies have been carried out on a variety of meat to Cl. botulinum toxin formation. The use of TFI has
products to determine shelf-life (Vankerschaver et been found to be rapid and cost effective in quantify-
al., 1996; Kant-Muermans et al., 1997; Neumeyer et ing a temperature-dependent process in terms of
al., 1997a,b; Devlieghere et al., 1999). However, no potential for microbial growth. The incorporation of
studies have used a model capable of incorporating predictive models into temperature logging devices
all variables that may have an impact on microbial has been illustrated for both E. coli and Pseudo-
growth. The main factors influencing microbial monas in meats were the temperature data can be
stability in meat products are temperature, pH and used to interpret microbial growth (Gill and Phillips,
water activity. Temperature particularly may vary 1990; McMeekin and Ross, 1996a). However, any
significantly throughout production and distribution interpretation must be based on an informed analysis
(Geeraerd et al., 1998). The majority of studies have of the data by a trained operator (McMeekin et al.,
used temperature-dependent models, such as the 1997).
square-root model, and while it is true to say that
with most meats temperature is the major factor 6.5. Product research and development
affecting shelf-life, it is by no means the only
variable (Einarsson and Ericksson, 1986; Gill et al., Altering a product composition or processing
1988; Gill and Jones, 1992a; Einarsson, 1994). More regime can have significant effects on the microbial
dynamic models such as those proposed (Van Impe population or opportunistic microbial growth. PFM
et al., 1992, 1995; Baranyi et al., 1993a, 1996b) are can provide a means to quickly evaluate the conse-
required to accurately predict shelf-life in meat quences of any changes in formulation or processing.
products with more than one fluctuating variable However, it cannot avoid but can reduce the need for
such as temperature. The practical methods used in expensive, time consuming challenge tests. Problems
predictive modelling for shelf-life need to advance. in production of existing products can also be
Standard microbiological methods of analysis al- evaluated in terms of out-of-specification circum-
though effective are slow. Future research should stances. Modelling can help a manufacturer to quick-
take into account the short shelf-life of much chilled ly decide on whether to use, destroy, rework or put a
meat and the fact that results are required quickly product on hold for suitable analysis (Blankenship et
(Gibbs and Williams, 1990). Use of more rapid al., 1988; Buchanan et al., 1989; Roberts, 1990). The
microbiological techniques will be required. incorporation of HACCP in the initial stages of
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product development allows for assessment of the foods including meat products to produce a desired
severity of risk from raw materials used in their effect. Breidt and Fleming (1998) addressed the
processing, distribution and intended use. Predictive issue of modelling the competitive growth of patho-
microbial models can become an integral tool to gens such as L. monocytogenes in mixed cultures of
evaluate control, document and defend safety design bacteria. The research may aid in the selection of
in a new or existing product (Baker, 1995). lactic acid bacteria for use in competitive inhibition

of pathogens in minimally processed fermented
6.6. Education meats. Pin and Baranyi (1998) used predictive

modelling to quantify the concepts of dominance and
PFM offers a front seat view on the behaviour of influence of major spoilage organisms found in

microorganisms in foods in response to changes in aerobically stored refrigerated meat under the in-
intrinsic and extrinsic variables. Laboratory experi- fluence of temperature and pH.
ments tend to be time consuming, expensive and
often not very illustrative. However models of
microbial behaviour using graphs or estimates of 7. Further research in predictive microbiology
time to a specified microbial level can clearly show
responses (Whiting, 1995). This is especially useful As the criteria for most meat products shelf-life is
in the education of non-technical people. Models can set by spoilage, mathematical models to predict for
interactively demonstrate to individuals the need to the major groups of spoilage microorganisms would
do their jobs correctly and the consequences if this be useful. The development of mathematical models
goes wrong (Walker and Jones, 1992). The role of to predict microbial spoilage of foods is normally
PFM in educating both technical and non technical very product and/or industry specific. A generic
personnel is equal. Although many technical people model developed for a specific spoilage organism,
would be familiar with microbial responses to therefore, may have limited appeal. Development of
change, clear visual representation of these changes comprehensive models for spoilage organisms has
can often reinforce their existing knowledge and help not received much attention. However in recent years
them apply it more productively. Graph generation research into predicting spoilage has gained much
through modelling can clearly illustrate the impor- interest (Zwietering et al., 1992; Gibson et al., 1994;
tance of critical control points in a HACCP program. Cuppers et al., 1997; Pin and Baranyi, 1998; Olvera
This in turn can help a manufacturer to create a more et al., 1999). McMeekin and Ross (1996b) illustrated
sophisticated and effective HACCP program in a that to date most spoilage models deal with fish and
multi-step food processing operation (Whiting and dairy products, with few dealing with meat par-
Buchanan, 1994). ticularly processed meats. Some models have been

proposed to describe growth of starter cultures in
6.7. Other applications fermented sausages (Bello and Sanchez-Fuertes,

1995; DoBmann et al., 1996). Nevertheless, only the
Within the laboratory environment, models can be model of Aggelis et al. (1998) for example is

used to quickly give the ranges of concern for a available to predict microbial growth in a raw cured
variable and thus allow better design of experiments. meat product.
Selection of specific conditions for enrichment of In terms of growth properties, most models to date
target organisms in the laboratory could also be refer to predicting growth rate or generation time.
maximised (McMeekin and Ross, 1996a). In the US The relevance of such a model may be questioned, as
the USDA/ARS/ERRC’s Microbial Food Safety with most pathogens any growth in a product is
Research Unit laboratory uses models to devise unacceptable. A greater understanding of the lag
laboratory work schedules for sampling timed ex- phase of microbial growth and the physiological
periments and analysing microbial data (Whiting, affecting factors is needed. There is also a need to
1997). McMeekin and Ross (1996a) applied predic- predict lag time accurately. Attempts have been
tive modelling to describe the effect of environmen- made for many organisms in predicting lag times
tal variables on microorganisms deliberately added to (Buchanan and Cygnarowicz, 1990; Genigeorgis et
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al., 1991; Zwietering et al., 1991; Van Impe et al., that of competing organisms (Coleman et al., 1996).
1992; Baranyi et al., 1993a; Breand et al., 1997; Growth of pathogens can be affected by production
McKellar et al., 1997). However, lag time predic- of bacteriostatic microbial by-products such as bac-
tions have shown much less reliability than growth teriocins. In Europe a purified bacteriocin called
rate predictions (Zwietering and Hasting, 1997a; Nisin is already in use in some meat products to
Robinson et al., 1998). One problem in predicting prevent microbial growth. Recently, other research-
microbial growth under changing conditions such as ers have begun to address the area and develop
temperature is that changes in the physicochemical models to predict the effect of competitive growth on
environment can result in a growth lag phase, in pathogens (Breidt and Fleming, 1998; Pin and
which the microbial cells adapt to their new con- Baranyi, 1998).
ditions. Any practically useful approach to modelling Finally, there is a necessity to link a series of
must, therefore, be able to take account of lag phase models together from each step in a food process
under different or fluctuating conditions, which are chain and hence provide a risk analysis of the
prevalent in many meat products. operation. Research in risk assessment is ongoing

There is also a need for increased metabolic within the scientific community. However, current
research to understand microbial physiology so that uncertainty and lack of knowledge about the effects
primary and secondary models can have a platform of particular operations during production, process-
based upon the intrinsic and extrinsic physiological, ing and distribution of food has meant that practical
chemical and physical interactions of microorga- application of risk assessment in industry has being
nisms. This can lead to greater understanding of why limited. Continuing research, which integrates risk
certain microorganisms are more or less tolerant to assessment with PFM and analysis of a particular
environmental conditions (Ko et al., 1994; Smith, situation, could help in the objective and accurate
1996; Stecchini et al., 1998). assessment of a production process. The develop-

The emergence of low-infectious dose pathogens ment of sophisticated nonthermal preservation tech-
particularly with ground beef products presents a niques in the meat industry such as high hydrostatic
significant challenge to predictive microbiology pressure processing, high intensity pulsed electric
(Miller et al., 1998). In cooking ground beef prod- field processing, oscillating magnetic field process-
ucts rate of decline of E. coli 0157:H7 will depend ing, light pulse sterilisation and food irradiation
on prior storage temperatures and the fat content of could have significant effects on microbial physi-
the product (Jackson et al., 1997). Some research has ology, that in turn will affect the ability to produce
indicated that increasing fat content of meat provides accurate predictions (Barbosa-Canovas et al., 1998).
protection to pathogens during cooking (Line et al., As modelling moves towards more mechanistic
1991, Ahmed et al., 1995). Predictive models need to approaches such as connecting behaviour of a single
consider how the thickness of product such as cell to that of a whole population in making predic-
burgers will affect pathogen survival. Thicker bur- tions, so more variables may need to be considered
gers will provide a greater probability of pathogen (Baranyi, 1997). However, overparameterisation can
survival if cooking is inadequate. Incorporation of make models unnecessarily complex. Thus, models
heat transfer equations into models could help de- should take into consideration only those variables
termine temperature changes during all stages of that impact significantly on microbial responses. This
storage and preparation (Alavi et al., 1996; Juneja et may require greater generation of product specific
al., 1997). Greater emphasis needs to be placed on models.
modelling the death kinetics of these pathogens so
that effective models can be developed for incorpora-
tion into HACCP and risk assessment systems in 8. Conclusions
meat production.

Competition between microorganisms in foods is The role of PFM has been increasing over the last
not considered in most predictive models. The decade. Research teams working throughout the
growth of a pathogen in ground beef for example is world have made many advances in developing and
dependent on both its initial population density and implementing models based on extensive data collec-
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21tion. However extensive research still remains if B relative growth rate at time M (s )
predictive food microbiological techniques are to be c regression coefficient for temperatures

21fully accepted. above optimal (K )
Classification of models still shows a lack of C asymptotic amount of growth that occurs

21clarification with no scheme having the full support as t increases indefinitely log (CFU)
of the scientific community. However the proposed C –C coefficients0 4

21three-tier scheme of primary, secondary and tertiary E activation energy (J mol )A
±Amodels is an advance to greater clarity. Availability DH enthalpy of activation of reaction cata-

21of many different models can make selection of the lysed by enzyme (J mol )
best model for a particular use difficult. In specific DH change in enthalpy associated with highH

situations some data can work better with one model temperature inactivation of enzyme (J
21than another. However using the simplest available mol )

model without compromising too much on accuracy DH change in enthalpy associated with lowL

is a rational policy. temperature inactivation of enzyme (J
21Development of more accurate and sophisticated mol )

21models is ongoing. Models incorporating more in- k growth rate constant (s )
trinsic and extrinsic variables coupled with improved k Arrhenius equation constant (pre-ex-o

understanding of microbial physiology are a higher ponential factor)
level of development. The use of PFM in the M time at which absolute growth rate at
development of quantitative microbial risk assess- maximum (s)
ments is an emerging application with big implica- n fitting curve parameter
tions for industrial safety, economics and public N number of organisms at time t

21health. Application of most existing growth models [(CFU) ]
to meats is appropriate. However in some ways they N initial number of organisms at time t50o

may be better for cooked meats, as the majority of P probability
spoilage flora is gone. pH minimum pH for growthmin

21The steady and careful implementation of predic- R universal gas constant (8.314 J mol
21tive microbiological techniques into academic insti- K )

tutes and industry is critical to its continued use and t time (s)
acceptance. Errors made using such techniques in T temperature (K)
relation to industry and public health could have T notional maximum growth temperaturemax

detrimental effects on the future research and de- (K)
velopment of PFM. Its use in real situations should T notional minimum growth temperaturemin

not be applied unless a defined level accuracy and (K)
1validation is achieved. The reliance of food micro- T temperature at which the enzyme is 50%]

2Hbiology on laboratory techniques to determine pro- inactive due to high temperature (K)
1cess and food safety is still necessary. However, T temperature at which the enzyme is 50%]

2Lwhat is apparent is that PFM will continue to inactive due to low temperature (K)
increase in importance within food microbiology as x polynomial
we move towards the 21st century. y logarithm of relative population size

Y logarithm of initial population sizeo

Y logarithm of maximum population sizemax

9. Nomenclature a water activityw

a minimum water activity for microbialwmin

A asymptotic log count as t decreases growth
21 21indefinitely (CFU) l lag phase duration (s )

21A(t) precise integral of the adjustment factor m maximum-specific growth rate (s )m

b regression coefficient for temperatures r(258C) development rate at 258C assuming no
21 21below optimal (K ) enzyme inactivation (s )
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