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Abstract 

Commonly encountered problems related to modelling bacterial growth in food are 
analysed from a mathematical point of view. Modelling techniques and terms, some 
misused, are discussed and an attempt is made to clarify how, and under what conditions, 
they may be used. A theoretical framework is given to provide a basis in which mathemati- 
cal models having been used in predictive microbiology can be embedded. By using several 
simplifying idealizations as a compromise between the complexity of the biological system 
and the available data, a practically usable model becomes available. 

Keywords: Mathematical modelling; Predictive food microbiology; Bacterial growth; Differ- 
ential equation; Cell kinetics 

1. Introduction 

The t:raditional approach to establishing food safety is via challenge tests using 
the pathogens of concern. That approach has long been regarded as expensive, 
slow, demanding on facilities and microbiological skills, and more recently as 
providing only modest assurance that a product formulation will be safe in the 
food chain. Moreover, knowledge acquired is not cumulative, and when a product 
formulation, or the temperature-time profile to which it is subjected changes, 
challenge tests must be repeated. An alternative is to understand more fully the 
responses of the microbes of concern to the key controlling factors in the food 
environment, to build a cumulative store of knowledge, and to develop the means 
to interpolate calculated microbial responses. The long term prospect of not 
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having to repeat challenge tests when the responses are confidently assured was 
embodied in the term ‘predictive microbiology’. 

Since its inception, predictive microbiology has prompted many animated dis- 
cussions and been subject to certain criticism (see, for example, Hedges, 1991). 
When a new concept is born, it is not unusual for papers to be published 
containing controversial terminology and describing mere curve fitting procedures 
as mathematical models. Admittedly, there is no mechanistic background behind 
many, so-called, ‘predictive models’, but, as Box and Draper (1987) mentioned, 
empirical models can develop to become more and more mechanistic as the 
information on the system being modelled increases. Therefore, we feel, this 
‘naive’ stage has been a useful, and perhaps even a necessary, beginning. Some 
criticism could, however, have been avoided if researchers had been more careful 
when using mathematical terms and tools and had tried to integrate the concept of 
predictive microbiology into related scientific disciplines more exactly. 

In this paper, some misused terms and curve fitting techniques are discussed 
first, then a mathematical framework is shown in which predictive food microbiol- 
ogy can be embedded. We use some notations frequently applied in mathematial 
textbooks. A vector will be denoted by bold italics: x = (x1.. . XJ means that the 
vector x has II entries, x1, x2, . . . ., x,. These entries can be time- (t-1 dependent 
variables, too, in which case x(t) = (x,(t). . . x,(t)) is a time-dependent vector 
variable. The notation y =flxJ means that there is a functional relationship, 
denoted by f, between the components of the two vectors: each component of y 
can be expressed as a function of the components of X. 

2. Misused terms and techniques 

2.1. Model and function 

The term ‘model’ has been defined in several excellent reviews on the mathe- 
matical modelling of microbiological processes (see, for example, Roels and 
Kossen, 1978). A purely empirical model, like the quadratic response surface for 
the environment dependence of a parameter of a bacterial population (as in 
Gibson et al., 1988) is a model, too, but its aim is nothing more than a smooth 
representation of the experimental results. It is a (regression) model in the sense 
used in the regression analysis of statistics where the aim is the numerical 
representation of certain responses by means of simple functions, like polynomials, 
without mechanistic explanation. The term mathematical model is more rigorous 
and refers to a set of basic hypotheses on the studied processes, some of which are 
possibly expressed by means of functions and (differential) equations. Therefore, 
from a mechanistic point of view, function and model are not equivalent terms. 
Function is a mathematical abstraction making it easier to describe a particular 
model. 
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For example, the definition of the Gompertz model of growth (Turner et al., 
1976) is based upon the hypothesis that p(t), the instantaneous specific growth 
rate of a quantity (we return to its definition later again) is related to the 
instantaneous amount, x(t), of that quantity by 

x 
~(1) =c.lnmax 

x(t) 

where x,,, is the maximum value of x(t) and c is a model constant. This leads to 
a differential equation, the solution of which is termed the Gompertz function. 
This function, completed by an additive term, was fitted by Gibson et al. (1988) to 
the logarithm of cell concentrations. It is appropriate to call the resulting sigmoid 
curve a Gompertz function (to whatever it is fitted) but, in a mechanistic sense, it 
obviously should not be called as Gompertz model. Nevertheless, it is true that in 
textbooks of regression analysis, the term ‘model’ is widely used for a function of a 
certain form, irrespective of how that function was originally derived. 

2.2. Rate and specific rate 

Let x(t) be a time-dependent variable describing the variation of a certain 
substance, like biomass or cell concentration. The instantaneous rate of the 
process is the derivative of x(t): dx(t)/dt. The specific rate, F(t), is defined as 

dz(r) 

dt p(6) = ~ 
x(t) 

If x(t) denotes the cell concentration in a bacterial culture then the growth rate is 
meant as the absolute increase in cell concentration per unit time, while the 
specific growth rate is the increase in cell concentration per unit time per cell. A 
simple calculation shows that if x(t) is positive then 

d(ln x(t)) 
CL(r) = dr 

Therefore, the specific growth rate can be measured as the slope of the growth 
curve where the natural logarithm of x(t) is plotted against time. If log,, is used 
instead of the natural logarithm then, the measured slope will be In(lO> = 2.3 times 
less than the specific growth rate. 

2.3. Doubling time and generation time 

At a fixed time, t,, let the value of p(t) be p&r) = pLfix. The relation for the 
doubling time, Td = In 2/pfix = 0.69/pr=, means that if ~01 remained the same 
then, at the time t, + Td, the cell concentration would be double of that what it 
was at t,. It is important to note that, in asynchronous cultures, Td is not 
equivalent to the mean generation time. In fact, the mean generation time can be 
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estimated by l/pfix rather than by 0.69/prM, if the cells’ division can be approxi- 
mated by a random birth process, such as the Poisson process (Rubinow, 1984). 

2.4. Intrinsic and controlling parameters 

Suppose that a bacterial process is modelled by an x(t) = f(p;t) function, where 
the vector p, involves the model parameters. These parameters depend on the 
particular bacteria used and on the (possibly time-dependent) conditions of the 
experiment which are influenced by the experimenter himself. It is advantageous if 
p can be divided into pI and pz where pI is independent of the experimenter and 
pz depends only on him/her. In this case, we can call the components of p1 the 
intrinsic parameters, and those of p3 the controlling parameters. This is frequently 
the situation when the model is described by a system of differential equations, the 
parameters of which are intrinsic parameters, but the initial values, which must be 
provided to obtain a particular solution for the differential equation, are control- 
ling parameters depending mainly on the experimenter. For example, a simple, 
‘lag-less’ model of a batch culture is 

dx(t) -= 
dt 

POX(f) 

x(0) =x0 

where x(t) is the (time-dependent) bacterial concentration, x0 is its value at the 
time t = 0 and pLo is the (constant) specific growth rate. The solution of the above, 
so-called, ‘initial value problem’ is 

x(t) =xOePOf 

Therefore, in this model, the parameter vector is p = (pO,x,,), where pa is an 
intrinsic, and x0 is a controlling parameter. It is quite easy to destroy this clear 
separation by reparameterizing the model function, for example: 

x(t) = ( q1 + q2)e@-@ 

where 

xo+po 
41 = 2 

x,-CL0 
q2 = 2 

In this form of the model function, q1 and q2 are obviously not purely controlling 
or intrinsic parameters. As a consequence, it would not be fruitful to model q1 or 
q2 as a function of the effect of the environment on bacterial growth because both 
also depend on the experimenter. That modelling procedure is correct only under 
the assumption that x0 is fixed and the model is used for prediction only at this 
fixed x0. Such a model would have limited practical use. Nevertheless, there are 
cases when similar, temporary, reparameterization is useful for other reasons, like 
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numerical stability or close-to-linear behaviour (Ratkowsky, 1983). It is important, 
however, to bear in mind that the different reparameterizations have computa- 
tional, and not mechanistic, reasons. 

The reparameterization of the Gompertz function was analysed by Garthright 
(1991) and Baranyi (1991a,b). A commonly used form of the Gompertz function is 

g(f) = a + ce-e-H’-m) 

where a,b,c,d are function parameters (Gibson et al., 1988; Buchanan and 
Phillips, 1990). From these parameters, the maximum slope of the curve is: 

bc 
CL Inax = - e 

If g(t) is fitted to the natural logarithm of the cell concentration, this new 
parameter, pmax, will be an estimation of the maximum specific growth rate of that 
culture. Accepting that a given environment unambiguously defines the maximum 
specific growth rate at which a homogeneous population is able to grow (Rubinow, 
19841, /-L mm is an intrinsic parameter of the model. 

The difference between the upper asymptote and the inoculum level, estimat- 
able by c, clearly depends on the experimenter who can decide a higher or lower 
inoculum level. Hence it is not an intrinsic parameter, but nor is it purely a 
controlling parameter, because it obviously depends on some bacterial characteris- 
tics, too. Therefore, the parameter 

is not an intrinsic parameter either, because it must depend on the inoculum value. 
The consequence is that the environment-dependence of the parameter b should 
not be modelled except when the inoculum level is the same, fixed, constant for 
both the experiments and the growth curves for which the prediction is given. 

However, the above form of g(t) can be useful from computational point of 
view, and, depending on the dataset to which it is applied, may show slightly better 
statistical features (as explained in Baranyi 1992a; 1992b) than the reparameteriza- 
tion suggested by Zwietering et al. (1991) and Garthright (1991). There is no 
contradiction in using the (a,c,b,m)-form of g(t) for curve fitting and then to 
model the effect of the environment on the derived parameter, CL_ = be/e. Note, 
however, that in our opinion, the Gompertz function should not be used to fit the 
logarithm of the bacterial concentration in any form (Baranyi et al., 1993a). 

Accordingly, it is unfortunate that the parameter b has been called the ‘relative 
growth rate’, as in Gibson et al. (1988) and Buchanan et al. (1990). 

2.5. The better the fit the better the model? 

Fitting a quadratic response surface to estimates of the maximum specific 
growth rate, or one of its transformations (e.g. log- or square-root transformation; 
see McMeekin et al., 1993) is a straightforward, simple solution to represent the 
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Table 1 

Example data for maximum specific growth rates at different pH values 

PH Fmax 

4.5 0.112 

4.5 0.129 

4.6 0.132 

4.6 0.123 

4.7 0.212 

5.0 0.387 

5.0 0.317 

5.0 0.378 

5.1 0.373 

5.5 0.451 

5.6 0.368 

5.6 0.459 

5.6 0.416 

6.0 0.423 

6.0 0.482 

6.0 0.469 

6.9 0.488 

7.0 0.462 

7.0 0.531 

7.0 0.506 

7.0 0.468 

7.0 0.476 

environment-dependence of the modelled variable. Multivariate quadratic func- 
tions are natural generalizations of second order polynomials, or parabolas. 
Buchanan and Phillips (1990), judged by an F-test, suggested that the multivariate 
generalization of a third order polynomial provided a better description of their 
data measuring the environment-dependence of the kinetic parameters of Listeriu 
monocytogenes. The idea was taken up by Hudson (19931, who concluded that the 
third order surface was a better model for his data than the quadratic surface. 
Before being tempted to use the multidimensional versions of the fourth, or even 
higher, order polynomials, it is worth investigating if this ‘upgrading-approach’ 
results in real progress. 

It is well-known that, generally, the more parameters a model contains the 
better fit it can produce. The R2 statistic, in itself, obviously cannot decide 
whether or not a new model is an improvement. Even the F-test, which takes the 
number of model parameters into account, is not an absolute measuring tool. 

As an example, consider Table 1 which contains the maximum specific growth 
rates of an organism at various pH values from pH,, = 4.5 to pH,, = 7. Apart 
from the pH, other conditions (temperature, a,, inoculum size, etc.) were made 
identical for the batch cultures from which the pmax values were derived. Some 
curves were replicated and, due to natural variance, more p,_ values belong to 
certain pH levels. The identity of the organism is not required to demonstrate our 
statistical point. A second and a third order polynomial were fitted to these data 
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Table 2 
Results of fitting a second (yl) and a third (~2) order polinomial to the data of Table 1 

Yl pH3 PH’ PH Constant 

Estimated coefficients - 0.0975 1.2591 - 3.5566 
their std.err. 0.0144 0.1686 0.4814 
their t-value - 6.74 7.47 - 7.39 

R* statistic 91% 
Residual !;S 0.0351 
F-value 98.84 

Y2 
Estimated coefficients 

their std.err. 
their t-value 

R2 statistic 
Residual 13s 
F-value 

0.0867 - 1.5925 9.7346 - 19.3588 
0.0238 0.4110 2.3328 4.3586 
3.64 -3.87 4.17 - 4.44 

95% 
0.0202 
112.76 

using the commercial Microsoft Excel package. The results are detailed in Table 2 
and represented in Fig. 1. In a statistical sense, the third order polynomial, y2, is 
undoubtedly better than the parabola, yl. But is this ‘upgrading’ an appropriate 
way to seek for improvement? The parabola, yl, suggests that, in the interval 
6 < pH < 7, where there are no data, prnax first increases then decreases, having a 

4 4.6 6 5.5 6 6.5 7 

PH 

Fig. 1. Maximum specific growth rates at different pH values (see Table 1) fitted by a quadratic function 
(y,), a third order polynomial (y,) and a quadratic function of a transformation of pH: pH’ = (7-PHI’. 
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maximum at about pH = 6.5. In the same pH interval, the third order polynomial, 
y2, suggests the opposite, pUmax first slightly decreasing then increasing, having a 
local minimum at about pH = 6.5. The truth is, however, that there is no reason to 
suppose any local maximum or minimum below pH = 7 and, in fact, the data did 
not indicate it. Using either y 1 or y2 for predictions around pH = 6.5 would 
probably give worse results than a simple estimation by eye. But, if we rescale the 
explanatory variable by introducing pH’ = (7-pHj2, knowing that the optimum pH 
is around 7.0, then a parabolic regression on the pH’ variable results in a curve 
along which prnax increases with pH in the whole experimental region (y3 of Fig. 
1). This last curve is the closest of the three to that expected from experience. 

This example shows that, although the response surfaces are useful from 
quantitative points of view, any conclusion about the shape of the function 
(‘qualitative feature’) representing the true model should be accepted with serious 
reservations, especially in regions where there are relatively few data like between 
pH 6 and 7 in the example above. 

It is generally true that the higher the order of a polynomial, the more ‘hills and 
valleys’ it can produce. A higher order polynomial, as a model function, is able to 
follow the random, up and down, errors of the measured values. However, our aim 
should be to eliminate these random errors rather then to fit them. On the other 
hand, the degree of the polynomial used in the model determines certain ‘qualita- 
tive features’ of the curve. A first order polynomial does not have minimum or 
maximum, a second order polynomial is symmetrical around its maximum or 
minimum, the third order polynomial has an inflexion point, as in the example 
above, etc. 

A possible improvement of the model is to fix some expected properties of the 
response function. For example, expected location of extreme points, monotonity, 
convexity, etc., all belong to these qualitative features. In the case above, it was a 
reasonable expectation that the model function should have only one extreme 
point, which is a maximum, and it is monotone increasing before the maximum and 
monotone decreasing after it. This could be achieved by keeping the second order 
polynomial as a model function but resealing the explanatory variable. 

A famous example for resealing a model variable is that of Arrhenius, where 
T’ = l/CT-T,) was introduced for the temperature T with T, = -273°C. Gibson et 
al. (1995) resealed the a, variable, measuring the water activity, by the substitution 
b,,,=/m. Th ese examples show that, instead of higher and higher order 
polynomials producing more and more ‘hills and valleys’, it is generally more 
advantageous to find appropriate transformations for either the explanatory or the 
dependent variables. The better fit does not necessarily mean a better model, 
especially in terms of ‘qualitative features’, which play a crucial role at the later 
stage of using the model for prediction. 

2.6. Indirect measures of growth responses 

It is reasonable to consider the concentration of viable cells, x(t), to be the 
basic variable in a homogeneous bacterial culture from which the instantaneous 
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specific growth rate, p(t), can be calculated as the derivative of In x(t). For 
obvious technical reasons (automation, etc.), indirect measures of both x(t) and 
p(t) are frequently reported in the literature. It is crucial to establish the relation- 
ship between the desired quantity and what, in fact, is measured. The role of these, 
so-called, calibration functions is essentially equivalent to that of the resealing 
transformations mentioned in Section 2.5 above. 

Turbidity and conductance measurements claim to be approximately linearly 
proportional to x(t) (Meynell and Meynell, 1965; Jason, 1983). This means that, if 
the measured quantity is 4, then 4 = f(x), where f is a linear calibration function: 
f(x) = a .x + b. If b is different from 0 then neither q nor log q is linearly 
proportional to log X. Hence, in a strict sense, the rate of change in 4 should not 
be used to estimate the viable count specific growth rate unless the proportionality 
of q (turbidity, conductance, etc.) to the original cell concentration, x, has been 
established over the complete matrix of environmental variables (temperature, pH, 
a,). Nor should the viable count models describing x(t) be directly applied to 
model cl(t). New calibration function, or other considerations, should be taken 
into account to model q(t) and/or to compare it with the viable count model. 

3. A mathematical model for bacterial growth 

A mathematical model is a set of, possibly not explicitly stated, assumptions, 
some of which are formulated by (differential) equations. In biology, the real 
system is extremely complex, so its model must inevitably include simplifying 
idealizations. These occur, for example, when one variable measures a feature 
which is, in fact, a composite of several contributing features, or when a variable is 
considered to be constant in time and/or homogeneous in space although it is 
known to be time-dependent and heterogeneous. ‘The question zk, however, not 
whether we introduce simplifying idealizations but where these idealizations should be 
made and how extensive they should be.’ (Gold, 1977). 

Frederickson et al. (1967) described some fundametal properties which any 
reasona.ble mathematical model of microbial kinetics should have. The models 
used in various disciplines, like biotechnology and food microbiology, should differ 
only in the aspect where the above mentioned idealizations and simplifications are 
placed and how extensive they are. Baranyi and Roberts (1994) listed several 
reasons why food microbiology should not simply copy the mathematical models 
used in biotechnology. Below we follow those idealizing and simplifying steps 
which make a model practically usable in food microbiology. 

The basic hypothesis is that the cell kinetics is determined by three classes of 
variables: 

- Intracellular conditions defining the instantaneous state of a cell. We assume 
that this state can be measured by the concentrations of certain biochemical 
entities, like biomass, enzymes or RNA, DNA. The per cell concentrations of 
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these IZ entities will be denoted by z(t) = (z,(t), . . . ,z,(t)). We also refer to z(t) as 
internal or physiological state vector. 

- Extracellular conditions that are changed by the bacterial metabolism. These 
quantities are involved in a vector, c(t), called the ‘external state vector of category 
1’. 

- Extracellular conditions that are independent of the growing culture. The 
vector variable involving these quantities is termed the ‘external state vector of 
category 2’ and is denoted by o(t). As it is indicated in the notation, it possibly 
changes with time. The most commonly modelled entry in D(t) is usually the 
temperature, T(t). 

The same classification of the variables affecting cell growth can be found also in, 
for example, Hills and Wright (1994). In Baranyi et al. (1993a), the composition of 
the external state vectors formed the environment: E(t) = (&1$(t)) where the 
E(t) function has a discontinuity at inoculation. 

To realize a practically usable model, several simplifying hypotheses are made. 
(1) We assume that the bacterial population is homogeneous, i.e. we disregard 

the possible space distribution of the cells. We do not take into account the natural 
biological variance, i.e. we disregard that z(t) has also probability distribution. 
Disregarding these distributions is equivalent to considering the entries of the 
physiological state vector as averages in .the physical and probability space. The 
error due to this assumption will be called the homogeneity error. 

(2) The mathematical form of our basic hypothesis is that the kinetics of the 
system can be expressed as 

d4t) 
- =.f(z(t>, c(t); W)) 

dt 

Wt) 
- =g(z(t>, c(t); W)) 

dt 

(1) 

(2) 
The semicolon, separating the variable D(t) from t(t) and c(t), indicates that the 
functions f and g depend on the actual state of the growth-independent external 
conditions, D(t). The simplest example is when the value of the rate constants in f 
and g depend on the external temperature. 

If D(t) is constant then the system above is called autonomcus (Frederickson, 
1967). This means that the ‘future’ of the c, z variables (their values after t,) 
depends only on their values at to and does not depend on their ‘past’ (values 
before t,). In other words, an injured cell, having fully recovered, generates the 
same successive subpopulations as if it had been healthy throughout its history. We 
do not consider the possible error (do the cells have memory of prior injury?) of 
this autonomy assumption. 

Note that, if the solution of (2) is substituted into (11, then the obtained 
differential equation for z(t) is non-autonomous. This was emphasised by Baranyi 
et al. (1993a). However, under reasonable assumptions, its solution converges to a 
delayed solution of its autonomous counterpart; the rate of this convergence was 
estimated by Baranyi et al. (1993b). 
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We consider the cell concentration of the homogeneous population, x(t) the 
principal quantity to be modelled. A binary fission takes place if the internal and 
external conditions allow it, therefore the instanteneous specific growth rate, p(t), 
which can be considered as an instantaneous measure of the birth rate per cell per 
unit time, depends on z(t) and c(t): 

El(t) = +(z($ c(t); D(O) (3) 
After these assumptions, the cell concentration can be calculated from the first 
order differential equation 

dx( t) 
-- =/.L(t)x(t) 

dt 

Apart from certain singular situations, the system of first order differential Eqs. 
(l)-(4) has a unique solution, if the initial conditions 

z( to) =za; c(t,) = co; x(to) =x0 
and the external D(t) function are provided. In other words, the variation of the 
system with time, after to, is determined by the J g, C/J model functions and 

- the value of the internal state vector, z(t), at to; 
- the value of the category 1 external state vector, c(t), at to; 
- the category 2 external state vector, D(t), as a function of time. 

Note that x(t) could always be included in c(t) as a variable characterizing the 
‘crowdedness’ around a single cell. Because of its distinguished role, however, x(t) 
and its differential equation were singled out from the components of c(t) and (2). 

(3) Another simplification is the assumption that z(t), c(t) and D(t) can be 
represented by just a few components, i.e. it is sufficient to characterize the 
internal/external environment by some main factors only. When restricted to a 
few environmental factors, we introduce a certain error. This will be referred to as 
completeness error in what follows. 

Since growing cells produce heat, in a strict sense, the temperature is not a 
category 2 external variable and should be a component of c(t) and not D(t). 
However, the small contribution of that heat is neglected. This example illustrates 
that the: border between the category 1 and category 2 external variables can, to a 
certain extent, be arbitrary, taking practical considerations into account. An 
external factor of category 2 can become that of category 1 as the information on 
the system increases and the particular model develops further. It is also possible 
that different, extra- and intracellular, concentrations of the same substance, like 
water, are treated as different entries and the connection between them are 
described by certain (for example, diffusion-) equations built in the functions f 
and g of the Eqs. (1) and (2). 

The homogeneity error can be decreased by making the variables of the system 
random or space-dependent (heterogeneous systems). The completeness error can 
be decreased by taking more and more variables into account when creating z(t), 
c(t) and D(t). Both improvements are rather labour-intensive when trying to 
identify the model parameters from measured data. What is more, the error of 
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Fig. 2. The intra- and extracellular conditions of a cell, z(t) and c(t), mutually affect each other. Their 
rate is described by the functions f(z,c) and g(z,c). The parameters in f and g depend on the actual 
state of those external conditions, involved in D(t), which are not affected by the bacterial metabolism. 
During a typical (sigmoid shaped) bacterial growth curve, z(r) improves during the lag phase and c(t) 
deteriorates in the stationary phase. 

prediction may even increase if the collected data are not sufficient in quantity or 
accuracy. An exaggeratedly detailed model may even become practically useless 
due to the lack of good quality data. It is frequently more efficient to improve the 
‘qualitative’ features (shape, analytical characteristics) of the function in the Eqs. 
(l)-(4). The error due to modelling the ‘true’ kinetics by the model functions f, g 
and 4 will be referred to as model function error. 

Note that, as the term ‘model’ is not used in a statistical sense (see point 1 in 
the Introduction), different model functions are really different functions here. In 
statistics, different model functions may represent the same function with different 
parameterization (Ratkowsky, 1983). 

The mathematical construction above is demonstrated in Fig. 2. The kinetics 
between z(t) and c(t) are described by the functions f and g. These functions, 
however, depend on the actual state of the external conditions, like temperature, 
atmosphere, etc., which are not affected by the growth. The probability of a binary 
fission in the small [t,t + At] interval is p.(t)At, where CL(t) =&z, c; D(t)). 
Assuming that the cell division happens randomly, for example, according to a 
Poisson process, the change of the population concentration with time can be 
described by Eq. (4). 
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As an illustration, we show how to embed different models in 
above. 

3.1. Monad’s model 

211 

the structure 

In this model (see, for example, Frederickson et al. 19671, z(t) and c(t) have 
only one entry: z,(t) measures the mass of a cell and c,(t) is the substrate 
concentration around the cell. 

The equations, corresponding to (1) and (2) are: 

dtr(t) --=k, cl(t) 

1dt KC + cl(t) 
21(t) 

G(t) 1 d%(t) --=--- 
Idt Y dt 

where k,, K, and Y are model constants, depending on the external conditions, 
D(t) only. Assuming that binary fission takes place when the mass of a cell reaches 
a critical (constant) value, the specific growth rate of the total mass is equal to the 
specific growth rate of the cell concentration, thus providing an equation corre- 
sponding to (3): 

To decide whether the parameters k,, K, and Y depend on the exteral conditions, 
D(t), and how, is a basic task in biotechnology. For the rate k,, for example, the 
most common model is that of Arrhenius inasmuch as D(t) is primarily defined by 
the temperature. 

3.2. The model of Hills and Wright (1994) 

To describe the lag phase, in addition to the growth rate, a posible idea is to 
introduce more compartments in t(t). In the model of Hills and Wright (1994), the 
internal state vector has two components, zl(t), and z,(t) representing the 
so-called excess biomass and the total biomass of a cell, respectively. z,(t) is the 
difference between the actual biomass of the cell (z&>> and the minimum mass 
below which a cell is no longer viable. This minimum mass, denoted by smin, is 
assumed to be constant. Because the cell number is proportional to the total 
biomass, the system of equations corresponding to (1) reads: 

“g = (k, - k,z,( t))q( t) 

-Q(t) =‘%(t) +%nin 
where k, and k, depend on the external environment, c(t) and D(t ), according to 
versions of Monod’s and Arrhenius’ function. The system was solved explicitly only 
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in the case when the external conditions were constant, therefore no upper 
asymptote was obtained with the explicit solution. Unlike in Monod’s model, for 
(31, the equation 

/J.(r) = - 
Smin 

was applied. Solving the equations in constant external conditions, it was deduced 
that 

k2ekLk2e-k2t 

EL(‘) = kla(t) = kl k ek,r + k e-k2t 
2 1 

where the constants depend on the external conditions. Since the value of cu(t) is 
between 0 and 1, and as t increases a(t) converges to 1 monotone increasingly, it 
describes the process of adjustment in the lag phase, where the maximum specific 
growth rate, k, is gradually approached. The rate of that convergence is defined 
by k,, similarly to the model below. 

3.3. The model of Baranyi and Roberts (1994) 

The internal state vector, t(t), has two components where z,(t) represents the 
per cell quantity of a critical substance causing the bottleneck in the growth (such 
as RNA or ATP) and z,(t) is the biomass of a cell. The category 1 external state 
vector, c(t), has only one component, the nutrient concentration. It is assumed 
that the lack of the critical substance has a limiting effect according to the 
Michaelis-Menten kinetics (limitation ‘from the left’). In a similar manner, de- 
creasing nutrient concentration causes limitation in growth ‘from the right’: 

dzdt) ~ = k,z,( t) 
dt 

dz2(t) 21(t) cl(t) -= 
dt Kz +21(t) k2 

Kc +cdt) 22(t) 

dcdt) 1 dz,(t) 
L=--- 

dt Y dt 

where k,, k,, Y, K, and K, are model paramenters, depending only on the 
category 2 external variables. The cell concentation, x(t) is assumed to be 
proportional to the total biomass, therefore 

d+(t) 

p(t)= dt zdt) cl(t) 
z2( f) = K,+z,(t)k2K,+.l(t) 

Note that the first equation above already contains a simplification because z,(t) 
initially increases, but then decreases as the cell divides (see more details in 
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Baranyi et al., 1995). The separation of the effects of the internal and external 
environment is reflected by the above formula very clearly. The specific growth 
rate depends on the physiological state of the cell (via zr); on the category 1 
external conditions (via c,); and on the category 2 external conditions (via the 
model constants). 

Denote v = k,, prnax = k, and 

a(t) = 
zr(t) 

Kz +21(t) 

u( t;, = 
cl(t) 

Kc + cl(t) 

The values of the functions a(t) and u(t) are between 0 and 1. This is why k, can 
be called the maximum specific growth rate. The function cu(t) describes the 
process of adjustment controlled by the accumulation of the critical substance, 
z,(t). The:refore, a(t) converges to 1, as t increases, similarly to the model of Hills 
and Wright (1994). The limiting function u(t) describes the transition to the 
stationary phase. 

For practical purposes, some simplifications were devised in accord with biologi- 
cal considerations. 

The nutrient limitation, in food, generally appears at high cell concentration 
only. Considering the nutrient infinite, however, results in limitless growth. For the 
sake of simplicity and because, in food microbiology, modelling the effect of 
nutrient limitation is less significant, u(t) is approximated by a simple limiting 
function depending on a maximum cell density parameter: 

x(t) m 
u(t) = l- - 

( I x max 

where x,,, is the maximum cell concentration, m is a curvature parameter 
characterizing the transition of the growth curve to the stationary phase. This is a 
technical realization of a previous note that x(t) can always be involved into the 
components of c(t). The model obtained for x(t) is: 

dx(t) 
_-= zl(t) 

dt K, +zdt) 
&( 1- (~)“)4t, (5) 

where 

d%(t) 
---Y$-- = uzr( t) (6) 

That is, the effect of the bacterial growth on the extracellular environment is 
expressed as a self-limiting growth where the stationary phase is caused by the high 
cell concentration itself. The error due to this simplification appears, obviously, 
only at high cell concentrations. 

The advantage of this simplification is that, if D(t) is constant, then the system 
of the above differential equations has an explicit solution, which makes the curve 
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fitting procedures easier. As has been published by Baranyi and Roberts (1994), 
the solution for the natural logarithm of the cell concentration, y = In x(t), is: 

pPmax~(~) - 1 

Y(t) =Yo+Pmax A(t) - kin 1+ 
i 

p(Ym-Yo) 
I 

where y, = In &to), the natural logarithm of the cell concentration at t = to; 

Y max = ln xmax, the natural logarithm of the maximum cell concentration. 
The function A(t) plays the role of a gradual delay in time: 

A(t) =t+ ln(e-ILm~f+e-ho-e-Y’-hO) 

p max 

where ho = -In a0 and 

zr(to) 

cuo = K, + zl( to) * 

The parameter (Ye is called the physiological state of the cells at t = to. 
A further simplifying assumption was that m = 1 and v = prnax (for the reason- 

ing, see Baranyi and Roberts, 1994). In addition to the several computational 
advantages compared with other sigmoid functions, the main use of the model is 
that it predicted bacterial growth response well, even if the temperature changed 
with time during the lag and exponential phases (Baranyi et al., 1995). It is very 
important to remember that, generally, the system (5), (6) does not necessarily 
have an explicit solution. The prnax (D(t)) function must not be simply substituted 
into the formulae above but the differential Eqs. (5) and (6) should be solved 
numerically on computer. 

Partly because of biological, and partly because of computational, considera- 
tions, further simplifications were devised to obtain a practically usable model 
matching the quality of available data: 

(a) 

(b) 

cc> 

The specific growth rate of the cells adapt to the temperature changes 
instanteneously, i.e. in the prnax (D(t)) function, there is no delay term. 
The p,,,,(D) function can be approximated by a multivariate polynomial of the 
components of D. 
If the cells have the same history (e.g the subculturing and inoculation 
procedures are carefully standardized) then the initial physiological state, CQ, 
can be considered constant. Consequently, ho = In a0 is also constant and can 
be used to characterize the initial physiological state. It is assumed that, in a 
certain range of the environmental factors involved in D, the parameter ho, 
which proved to be the product of the maximum specific growth rate and the 
lag, is independent of the actual values of those environmental factors (see 
Baranyi and Roberts, 1994). 

Applying these simplifications certainly increases the model function error and 
restricts the region where the model is valid. For example, Baranyi et al. (1995) 
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remarked that, at low water activity, the product of the lag and the growth rate is 
not constant, and that cells can grow abruptly after a relatively long lag phase. 
However., the fewer parameters to be identified, the more acurate is the estimation 
they produce. Such constraints towards parsimony are vital to get smaller errors 
when using the model for prediction. 

The idealizations and simplifying assumptions followed through above consti- 
tute a particular mathematical model applicable to bacterial growth in environ- 
ments characterizing food. 

4. Discussion 

After fixing the structure of the model, the task is to find the values of the 
model parameters, thus defining a particular pair of f and g model functions. The 
criterion for these functions is generally the goodness of fit to measured data. As 
mentioned above, each step in the model construction contains a certain error. In 
the main, these were classified as 

- homogeneity error; 
- completeness error; 
- model function error. 

When idlentifying the model parameters by fitting them to measured data, two 
other types of errors emerge: 

- measurement error; 
- numerical procedure error. 

In the term ‘numerical procedure error’, we include all those errors originating 
from the: numerical mathematics of the model fitting procedure. Note that, as in 
the case of the so-called ill-conditioned problems (Steer and Bulirsch, 1981), it is 
sometimes impossible to realize a usable model. 

As an example of estimating the contribution of the different error categories to 
the oversal error, consider the Brochothrix thermosphacta model of McClure et al. 
(1993). From fitting the growth curves individually by a sigmoid curve (first step), 
the standard errors of the maximum specific growth rates, pmax, were estimated, 
on averaige, as 8% of the estimated prnax values. Observe that in Fig. 1, although 
not B. t,hemosphacta, several replicates of growth curves gave maximum specific 
growth rate values with about 10% deviance. This means that a response surface 
fitted to the In CL,,,= values (second step) is expected to give about exp(0.08) = 0.1 
for the standard error of regression (also called Residual Mean Square Error, 
RMSE) in that paper. This is a consequence of transforming the modelled variable 
into its natural logarithm. Instead, the RMSE values were RMSE, = 0.29 and 
RMSE, = 0.27, depending on whether the Gompertz function or the function of 
Baranyi et al. (1993) was used in the first step. The meaning of the RMSE is as 
follows: if experimental growth curves are generated under conditions described in 
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the paper, the observed EL,_ values will differ, on average, from the predicted 

CL by about f 30%, because exp(0.27) = 0.30. Because of the multiplicative 
nz:re of this error term, the same can be said for the observed minimum doubling 
times. 

Since the laboratory experiments were carried out in media, which can be 
considered to be homogeneous environment, and the conditions, apart from the 
intentionally changed and measured environmental factors, were identical, the 
homogeneity error and the completeness error did not make a significant contribu- 
tion to the RMSE. Nor did the numerical procedure error, as the calculated 
indicators showed. Therefore, the next estimation can be given: in the experimen- 
tal region, the use of the quadratic surface, as a model for the p,,,, (D) function, 
ca. tripled the originally 10% measurement error of CL,_. That is, for similar 
experiments, the maximum specific growth rate can be predicted to about f30% 
accuracy, two thirds of which is the model function error. Note, however, that this 
is an average and, in fact, the error distribution varies in the mathematical space of 
the environmental variables. 

The authors collected about 100 independent measures of doubling times of B. 
themosphacta from the literature. The predicted doubling times were almost 
always ‘fail-safe’ because the laboratory medium was optimal for the bacteria apart 
from those effects which were modelled. 

Apart from the 20% model function error, the above model completed its task, 
without labour-intensive effort to reduce the homogeneity and completeness error, 
inasmuch as the aim was to model the greatest bacterial growth expected in a given 
environment. 

In real food situation, improving the model would appear to be attainable by 
decreasing the homogeneity and completeness errors. However, when complicating 
the model by introducing space-dependent variables and additional environmental 
factors, it is important to remember the warnings outlined in Section 2.5 of the 
Introduction. Further parameters should be added only when they are justified, 
and when they are supported by data relevant to the new parameter(s) and of 
appropriate quality. More parameters usually mean a better fit to the measured 
data (i.e. the data from which the model was derived), but may mean reduced 
accuracy when the model is used for predictions, because of lack of parsimony. 

A dilemma faces those attempting to model microbial growth reponses in foods. 
Foods are varied and usually complex structures. The microbial response is 
biochemically complex, and is likely to vary with the circumstances. One solution is 
to try to take account of all the known and anticipated properties such as cell 
distribution, heterogeneity of the microbial population etc. to make an all-encom- 
passing model. This demands a very detailed understanding of those properties 
and how they are affected by the conditions prevailing in the food and its 
environment. Such detailed information may not be available, and may be difficult, 
or costly, to acquire. It is also possible that the intermediate stages of the complex 
model development will not yield a practically useful preliminary model. 

An alternative approach is to make certain assumptions and simplifications, 
which must be biologically justifiable, and model relatively simple measures of 
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microbial growth and death with respect to relatively few descriptors of the 
enviromnent to determine first how much of the observed biological response can 
be accounted for by this simplified approach. That which cannot be explained 
would thlen require more complex efforts. 

We h,ave been gratified that the latter approach, making assumptions and 
simplifications, has already yielded models that give useful and usable estimates of 
the microbial responses in a wide range of foods and circumstances pertinent to 
food microbiology and the food industry. 
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