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Much research on food safety has been conducted
since the National Food Safety Initiative of 1997. Risk
assessment plays an important role in food safety
practices and programs, and various dose–response
models for estimating microbial risks have been inves-
tigated. Several dose–response models can provide
reasonably good fits to the data in the experimental
dose range, but yield risk estimates that differ by or-
ders of magnitude in the low-dose range. Hence, model
uncertainty can be just important as data uncertainty
(experimental variation) in risk assessment. Although
it is common in risk assessment to account for data
uncertainty, it is uncommon to account for model un-
certainties. In this paper we incorporate data uncer-
tainties with confidence limits and model uncertain-
ties with a weighted average of an estimate from each
of various models. A numerical tool to compute the
maximum likelihood estimates and confidence limits
is addressed. The proposed method for incorporating
model uncertainties is illustrated with real data sets.
© 2000 Academic Press
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1. INTRODUCTION

The incidence of foodborne illness continues to be a
significant public health concern throughout the
United States. Diseases caused by food are reported to
cause an estimated 325,000 serious illness resulting in
hospitalizations, 76 million cases of gastrointestinal
illness, and 5000 deaths each year (Mead et al., 1999).
The National Food Safety Initiative of 1997 (FDA,
USDA, EPA, CDCP, 1997) was the result of increasing
concern about the safety of the nation’s food supply. Its
goal is to improve food safety, particularly in the area
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and education.
Risk assessment is a valuable tool for helping to

make public health decisions in food safety areas. It
characterizes the likelihood of harm to the public,
helps to define the uncertainties, and provides some
level of comfort with the inferences that are made.
Recently much research has been done in microbial
risk assessment (Marks et al., 1998; Haas et al., 1999;

odell et al., 1999). Exposure to foodborne pathogens is
t very low doses in most cases. In order to estimate
isk at such low doses, experiments with voluntary
uman subjects are often conducted. The number of
olunteers used in experiments is usually small and
herefore high levels of dose are set to produce illness
n an appreciable fraction (e.g., 1021 or more) of volun-

teers. An important statistical problem is to use these
high-dose data to estimate risk at low doses or estimate
a dose level at which the risk of illness would exceed
some specified low amount (e.g., 1024). This problem is
commonly known as the low-dose extrapolation prob-
lem.

In the assessment of dose response, there might be a
number of plausible dose–response models whose fits
are consistent with the data, but they may have very
different behaviors below the observed data range. In
other words, the result of low-dose extrapolation pro-
cedures depends strongly on the dose–response rela-
tionship one assumes. Several dose–response models
often provide reasonably good fits to the data in the
experimental dose range, but yield risk estimates that
differ by several orders of magnitude in the low-dose
range. The primary purpose of this paper is to present
a practically easy-to-use tool for incorporating model
uncertainties along with data uncertainties into the
risk assessment.

The paper is organized as follows. In section 2 we
review existing dose–response models in microbial risk
assessment, a way of fitting them to data, and confi-
dence limits. In section 3 we review software to fit the
models, conduct goodness-of-fit tests, and compute con-
fidence limits. We also introduce the software GAMS.
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In section 4 a method of incorporating model uncer-
tainties is addressed with examples.

2. REVIEW OF STATISTICAL METHODS IN MICROBIAL
RISK ASSESSMENT

A dose–response model is a mathematical function
bounded by zero and one that takes as an argument a
measure of dose and yields the probability of a partic-
ular adverse effect. For review of existing dose–re-
sponse models in microbial risk assessment, see Haas
et al. (1999) and Kodell et al. (1999). Some dose–
response models used in this paper are summarized in
Table 1.

Let there be I independent dose groups (i 5 1, . . . ,
I) with ni independent subjects per group. Let Xi de-
note the number of infected subjects in dose group i,

ith observed value xi. Assuming that the Xi are dis-
tributed Binomial (ni, P(di: u)), u 5 (a, b), the log-
ikelihood function differs only by a constant from

L~u! 5 O
i51

I

@Xiln P~di: u! 1 ~ni 2 Xi!ln~1 2 P~di: u!!#.

he maximum likelihood estimates of u are obtained by
finding the values of u to maximize L(u). Goodness-
f-fit is tested by comparing each fitted model’s log-
ikelihood value to that of the saturated model, i.e., the

odel giving the observed probabilities xi/ni for each
group. The significance of twice the difference in log-
likelihoods is assessed by comparison to x 2(I 2 dim(u)),
with dim(u) being the dimension of the parameter vec-
tor u.

In a particular family of dose–response models such
as the Beta-Poisson models, different values of the
parameters may describe dose–response data reason-
ably well and predict divergent risks at low doses. This
uncertainty can be expressed roughly as the range of
risks consistent with the data within a particular pa-
rameter family and generally quantified with the use of
statistical confidence limits. Crump and Howe (1985)
provide a nice review of approaches for setting confi-
dence limits. In this paper we employ the confidence
limits based on the asymptotic distribution of the like-

Dose–Response Mod

Name

Beta-Poisson P(di; a, b) 5

Log-Normal P~di; a, b! 5

Log-Logistic P(di; a, b) 5
Extreme-Value P(di; a, b) 5
lihood ratio. According to the approach, the 95% upper
confidence limit on risk at a dose d 0 (denoted by R*U) is
determined from solving the equation

R*U 5 Maximum of P~d: u!

subject to d 5 d0 2@L~û! 2 L~u!# 5 ~1.64485! 2,

where û is the unconstrained maximum likelihood es-
timate of u. Similarly, the 95% lower confidence limit
on risk (denoted by R*L) is found by minimizing P(d: u)
subject to the constraint. The 95% lower limit of dose at
risk R 0 (denoted by d*L) is determined from solving the
equation

d*L 5 Minimum of d

subject to P~d: u! 5 R0 2@L~û! 2 L~u!#

5 ~1.64485! 2.

3. NUMERICAL TOOLS TO CONDUCT
STATISTICAL ANALYSES

Haas et al. (1999) obtain the maximum likelihood
estimates of the Beta-Poisson model using the
SOLVER in EXCEL. The performance of the SOLVER
in EXCEL is not always satisfactory, although it gives
the right answer in some cases. As an example we
consider a human dose–response study of Salmonella
typhi (Hornick et al., 1970) summarized in Table 2.

The SOLVER in EXCEL fails to produce the right
answer with several candidates of initial values of the
unknown parameters. The FORTRAN IMSL subrou-
tine NCONF also failed to give the right answer. Crys-
tall Ball Pro gives the right answer after running ap-

Used in This Paper

Dose–response models

2 (1 1 di/b)2a a . 0, b . 0

p E
2`

~ln di2a!/b

expS2
1
2 t 2Ddt 2` , a , `, b . 0

(1 1 exp[2(ln(di) 2 a)/b]) 2` , a , `, b . 0
2 exp[2exp(a 1 b ln di)] 2` , a , `, b . 0

TABLE 2
Human Dose–Response Study of Salmonella typhi

(Hornick et al., 1970)

Dose: 103 105 107 108 109

Total 14 116 32 9 42
Ill 0 32 16 8 40
els

1

1

Î2

1/
1



proximately 10 min on 400-MHz IBM-PC, but it is not

d

1

not well known, even with high-dose challenges. An-

m
b
w

s
d

70 KANG, KODELL, AND CHEN
suitable for computing confidence limits described in
the previous section. Therefore, it is desirable to find
an easier and more reliable way of computing the max-
imum likelihood estimates of dose–response models.
Another issue is to compute the upper confidence limits
on risk at a dose d and lower confidence limits for the

ose corresponding to a risk R. To compute confidence
limits from the likelihood approach is much more dif-
ficult than obtaining the maximum likelihood esti-
mates of dose–response parameters.

To obtain the maximum likelihood estimates can be
viewed as a nonlinear programming problem. The non-
linear programming problem is defined by maximizing
a nonlinear objective function subject to linear and
nonlinear constraints (Mangasarian, 1994). Therefore,
finding an upper (lower) confidence limit is also a non-
linear programming problem. To solve the problem
numerically, we use GAMS (Brooke et al., 1988; GAMS
Development Corporation, Washington, DC), a high-
level language for solving nonlinear programming
problems. GAMS finds a local minimum point by
checking the Karush–Khun–Tucker necessary opti-
mality conditions (e.g., Han and Mangasarian, 1979, p.
257). The restricted free-trial version of GAMS can be
downloaded from its homepage (http://www.gams.
com).

For the human dose–response study of S. typhi (Hor-
nick et al., 1970), GAMS succeeds to find the (uncon-
strained) maximum likelihood estimate (â 5 0.203, b̂ 5
29,173) in the first trial. It is also ascertained that â 5
0.203, b̂ 5 29,173 is the right answer from the complete
grid search.

The 95% upper confidence limit on risk (denoted by
R*U) at a dose d 5 1 based on the Beta-Poisson model
is computed by GAMS as R*U 5 1.59 3 1025. The 95%
lower limit for the dose d corresponding to an risk of
024 (denoted by d*L) is also computed by GAMS, and

d*L 5 6.125. The GAMS programs to compute the
upper confidence limits on risk and the lower confi-
dence limit for the dose d are available from the au-
thors upon request.

4. INCORPORATING MODEL UNCERTAINTY IN
MICROBIAL RISK ASSESSMENT

When experimental results are extrapolated to very
low doses to obtain an accurate estimate of risk due to
daily exposure, many functional forms for describing
dose response may provide adequate statistical fits for
the experimental data. The important factors in model
selection are the consistency of the model assumptions
with the underlying biology of the system and the
plausibility of extrapolating the model that has been
derived from data in the high-dose region to the low-
dose region. Unfortunately, explicit details of the bio-
logical mechanisms of colonization and infection are
other difficulty with extrapolation procedures is that
the estimates of risk at low doses depend highly on the
selected model. Diverse models could provide good fits
to the observed data, but give very different estimates
of low-dose risks. Therefore, model selection uncer-
tainty should be fully incorporated into statistical in-
ference.

In this study in order to incorporate model uncer-
tainty into a parameter estimate we will follow the
approach of Buckland et al. (1997) as reviewed by
Pinsky (1999). Suppose that we have K contending
models, Mi, i 5 1, . . . , K. We assume that the param-
eter of interest u is common to all models. Let û i be the
estimate of u under the model Mi. We take a weighted
average of û i as the estimate of u.

û 5 O
i51

K

wiû i,

where wi is the weight for the model Mi and ¥ i51
K wi 5

1. The theory still holds for any theoretical quantity
associated with the model such as the 95% upper con-
fidence limit on risk. We compute the weights wi’s by
using Akaike’s information criterion AIC (Akaike,
1973; Burnham and Anderson, 1992).

I 5 22L 1 2h,

where L is the log-likelihood function, evaluated by
substituting the maximum likelihood estimates of the
parameters and h is the number of parameters. The
philosophy underlying AIC is that the true model is
high-dimensional, requiring many (possibly infinitely
many) parameters to describe it. Sakamoto et al. (1986)
note that AIC is not a criterion for the estimation of the
true order but the one for the best model fit. That is, we
seek the best approximate model.

We consider I i 5 22Li 1 2hi for K contending
odels. The model with the smallest value for I is the

est model in the sense of AIC. A plausible choice for
eight wi is

wi 5
exp~2Ii/2!

¥ j51
K exp~2Ij/2!

, i 5 1, . . . , K.

Note that in some cases dose–response models are
nested. For example, the exponential model is a special
case of the Beta-Poisson model, while the Log-Logistic
and Beta-Poisson models are submodels of the
Weibull–Gamma model, which is a three-parameter
model. Since the method of Buckland et al. (1997) as-
umes that the fitted models are in some sense a ran-
om sample from an infinite set of possible models, in
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the following examples we consider a set of models in
which a model is not a submodel of the others.

In the first example, the four 2-parameter models of
section 2 are selected. The data are from a human
dose–response study of Shigella dysenteriae 1 strain
M131 (Levine et al., 1973) summarized in Table 3. Four
2-parameter models are fitted and the results are sum-
marized in Table 4. After the incorporation of model
uncertainty, the maximum likelihood estimates and
the 95% upper confidence limit on risk at a dose d 5 1
are obtained by

0.033 5 0.275 3 0.0127 1 0.256 3 0.0261 1 0.253

3 0.0374 1 0.216 3 0.0618

0.177 5 0.275 3 0.102 1 0.256 3 0.191 1 0.253

3 0.197 1 0.216 3 0.234,

respectively.
In the second example, the data are the human dose–

response study of Shigella paradysenteriae (Shaugh-
nessy et al., 1946) summarized in Table 5. Four 2-pa-
rameter models are fitted and the results are
summarized in Table 6. After the incorporation of
model uncertainty, the maximum likelihood estimate
and the 95% lower confidence limit of dose at risk 1024

are 13,276,616 and 7095, respectively. We would like to
emphasize that the study of S. paradysenteriae
(Shaughnessy et al., 1946) is not typical among the 25

ata sets in Teunis et al. (1996) in the sense that the
aximum likelihood estimate of dose at risk 1024 with

the Log-Logistic model is greater than one. For 15 data
sets of 25, the maximum likelihood estimate of dose at
risk 1024 is less than one, which implies that the lower

TABLE 4
Results of Model Fitting and Confidence Limits

for Shigella dysenteriae 1 Strain M131

Model L(u) wi

R*U at
d 5 1

MLE of risk at
d 5 1

Beta-Poisson 214.851 0.275 0.102 0.0127
Log-Normal 214.920 0.256 0.191 0.0261
Log-Logistic 214.932 0.253 0.197 0.0374
Extreme-Value 215.093 0.216 0.234 0.0618

Human Dose–Response Study of Shigella dysenteriae 1
Strain M131 (Levine et al., 1973)

Dose: 10 200 2000 10000

Total 10 4 10 6
Ill 1 2 7 5
confidence limit is obviously less than one. It means
that even one microorganism is not allowed if a risk of
1024 is to be achieved. A feature of the other 10 data
sets is that they may have zero responses in the first
(and sometimes second) dose so that a dose–response
curve does not take off much at the low doses. In such
cases a huge amount of model uncertainty exists as
shown in Table 6.

5. DISCUSSION

Often times high doses such as 109 and 1010 cause
numerical problems in running GAMS. In order to get
around the problems we rescale the original doses by
dividing by a big constant C (for example, 109). After
rescaling, the risk at the original dose d is evaluated at
the rescaled dose d (r) 5 d/C.

The inverse function of a dose–response model is
used in the computation of the 95% lower confidence
limit of dose at a given risk. However, the GAMS does
not support the inverse function of the standard nor-
mal distribution function. Iteration is used for the Log-
Normal model. Several doses are tried, so that a dose
can be finally selected to yield a given risk.

A background risk is often assumed in the models of
chemical risk assessment. It seems that more discus-
sion will be needed for a background risk in microbial
risk assessment. All models in Table 1 have zero back-
ground risk, while only the Exponential–Exponential
model (Kodell et al., 1999) has nonzero background
risk. However, the Exponential–Exponential model
gives one of the poorest fitting models for the 25 data
sets examined (Kodell et al., 1999).

In this paper incorporating model uncertainties is
achieved using a simple weighting method, where the
weights are obtained from Akaike’s information crite-

Human Dose–Response Study of Shigella
paradysenteriae (Shaughnessy et al., 1946)

Dose: 108 109 1010

Total 4 4 8
Infected 1 4 8

TABLE 6
Results of Model Fitting and Confidence Limits

for Shigella paradysenteriae

Model L(u) wi

d*L at risk
1024

MLE of dose
at risk 1024

Beta-Poisson 22.443 0.234 5,699.0 25,117.2
Log-Normal 22.276 0.277 19,295.0 10,569,762.4
Log-Logistic 22.249 0.285 1,463.8 36,287,569.1
Extreme-Value 22.584 0.204 2.13 3 1024 4,693.3
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use for the applied statisticians. There are different
methods and philosophies for incorporating model un-
certainties into inference (Burnham and Anderson,
1998). It might be interesting in future studies to in-
vestigate the performance of the simple weighting
method and compare it with the other methods.

The main reason to account for model uncertainty in
risk prediction is to reduce dependence on individual
models. Combining estimates from different plausible
models will not necessarily reduce model uncertainty.
However, it will reduce dependence on individual mod-
els, i.e., model bias. The current practice in risk assess-
ment, whether for chemicals or microbes, is to use a
single dose–response model. Hence, the results are
highly dependent on the particular model chosen. The
approach applies to risk assessment in general, not
just to microbial risk assessment. It could be used in
chemical risk assessment as well.
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