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Abstract

Quantitative microbiological risk assessment (QMRA), predictive modelling and HACCP may be used as tools to increase

food safety and can be integrated fruitfully for many purposes. However, when QMRA is applied for public health issues like

the evaluation of the status of public health, existing predictive models may not be suited to model bacterial growth. In this

context, precise quantification of risks is more important than in the context of food manufacturing alone. In this paper, the

modular process risk model (MPRM) is briefly introduced as a QMRA modelling framework. This framework can be used to

model the transmission of pathogens through any food pathway, by assigning one of six basic processes (modules) to each of

the processing steps. Bacterial growth is one of these basic processes. For QMRA, models of bacterial growth need to be

expressed in terms of probability, for example to predict the probability that a critical concentration is reached within a certain

amount of time. In contrast, available predictive models are developed and validated to produce point estimates of population

sizes and therefore do not fit with this requirement. Recent experience from a European risk assessment project is discussed to

illustrate some of the problems that may arise when predictive growth models are used in QMRA. It is suggested that a new

type of predictive models needs to be developed that incorporates modelling of variability and uncertainty in growth. D 2002

Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantitative microbiological risk assessment

(QMRA), predictive modelling and HACCP have

gained increased attention in food microbiology in

recent years. They offer structures and tools to enhance

food safety by evaluating the safety of (new) food

products and predicting the effects of intervention

measures in food production processes. Although the

three are integrated (Buchanan and Whiting, 1996;

Notermans and Mead, 1996; Elliott, 1996; Walls and

Scott, 1997; Buchanan and Whiting, 1998; Serra et al.,

1999), there are some important differences. Whereas

HACCP is typically linked to industrial processes,

QMRA is more often used for public health purposes,

for example when ‘farm to table’ models are con-

structed. Both in the HACCP system and in QMRA

studies, potential bacterial growth can be incorporated

by applying predictive food microbiology models.

Predictive models can quantify the increase or de-
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crease of bacterial population sizes. However, these

models have not been specifically developed for the

purpose of QMRA. As with mathematical models in

general, one should be careful in applying them for

other purposes than those for which they are made.

Research questions that led to the modelling may have

induced simplifying assumptions that are not valid in

other circumstances.

Therefore, the applicability of predictive micro-

biology models in quantitative microbiological risk

assessment is discussed in this paper. It focuses on

bacterial growth as a typical QMRA process. First,

general aspects of QMRA are discussed. The modular

process risk model (MPRM) framework, which is

currently being developed by the author, is introduced

and the concepts of risk and probability are briefly

reviewed. Second, an overview is given of predictive

growth modelling, and the discrepancy between the

output of growth models and the needs of QMRA is

indicated. Third, the problems are illustrated by some

experiences that we had in a recent case study of

Bacillus cereus in a vegetable product. In this case

study, some additional problems could be identified.

Finally, possibilities for increasing the usefulness of

predictive growth models for QMRA are discussed.

2. Quantitative microbiological risk assessment

(QMRA)

2.1. The modular process risk model (MPRM) frame-

work

Several QMRA studies, on for example Salmo-

nella enteritidis in eggs, Escherichia coli O157:H7 in

beef, Listeria monocytogenes in cheese and Salmo-

nella spp. and Campylobacter spp. in poultry, are

completed or in progress (e.g. Whiting and Buchanan,

1997; Cassin et al., 1998; Bemrah et al., 1998). In

these studies, the transmission of the hazard involved

is modelled through the food pathway, a chain of

processes from a source (e.g. the farm) to the moment

of consumption. This transmission model follows

(probability distributions of) the prevalence and the

concentration of the hazard along the consecutive

processes of the food pathway. The resulting risk

model may not only be used to assess the current risk

of the hazard/product/process combination, but also to

predict the effects of interventions proposed to miti-

gate the risk.

Several approaches have been suggested for such

‘farm to table’ QMRA models (McNab, 1998; Cassin

et al., 1998; Marks et al.,1998). As a general frame-

work, we propose the use of ‘modular process risk

models’ (MPRMs) (Nauta, 2001), a variant of the

Process Risk Model introduced by Cassin et al.

(1998). In short, the idea behind MPRMs is that in

any food pathway, all processing steps can be iden-

tified as one of six basic processes (modules): either

one of two microbial processes, growth and inacti-

vation, or one of four product handling processes,

mixing, partitioning, removal and cross contamina-

tion. In principle, once the modelling techniques for

all these basic processes are established, every food

pathway can be modelled. The food pathway is split

up in a series of processing steps and one basic

process is assigned to each of these steps. If properly

defined, the input and output of all the models for the

basic processes can be linked, and any food pathway

can be modelled. An important characteristic of the

MPRM is that it is process-driven and not data-

driven, that is that the models should be mechanistic

as much as possible. The choice of the model should

be based on the process, not on the availability of

data.

Table 1 gives an overview of the effects of the six

basic processes on the prevalence (the fraction of

contaminated ‘units’), the concentration (that is the

number of microorganisms per ‘unit’) and the unit

size. The definition of the ‘unit’ is crucial here. It is a

physically separated quantity of product in the proc-

ess, like for example a carcass, a package of ground

beef, a milk tank or a bottle of milk. If units are

mixed or partitioned, the unit has to be redefined, and

the distribution of microorganisms over the units is

altered. As an example, consider contaminated milk

in a large tank that is distributed over a large number

of milk bottles: the unit size decreases, the preva-

lence may decrease if by chance a bottle ends up

uncontaminated, but the total number of cells remains

equal.

From the basic processes mentioned above, the

process that is most typical for microbial risk assess-

ment is microbial growth. Growth is a complicated,

uncertain and variable process. As can be read from

Table 1, it is the only basic process (with cross
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contamination) which will always give an increase of

risk. Due to growth, products that are contaminated at

a low level (possibly below the detection limit) and

therefore are considered safe at a certain moment of

time may become unsafe at some later time. This is an

important issue in for example the context of ‘Food

Safety Objectives’.

This paper concentrates on the basic process of

microbial growth. The aim is to find a modelling

technique for microbial growth that is suited to imple-

ment in a MPRM for QMRA. As growth modelling is

widely applied in predictive microbiology, we regard

predictive microbiology models in the light of the

needs for QMRA.

2.2. The aims of QMRA

Although ‘food safety’ is a common goal, food

industry and public health authorities have different

aims when applying QMRA, HACCP or predictive

modelling. HACCP is particularly relevant for food

manufacturers and food catering, which characteristi-

cally deal with well-defined and controlled production

and/or preparation processes. Both quantitative risk

assessment and predictive modelling can be used in

the HACCP system (Notermans and Mead, 1996;

Elliott, 1996; Buchanan and Whiting, 1998; Serra et

al., 1999). In a HACCP context, the purpose of these

two tools is to assess whether a food product will be

safe at the moment of consumption. Risks are elim-

inated or reduced as much as possible. For public

health authorities, however, risk assessment may serve

as a means to quantify the risks attributable to certain

food products. In that case, the purpose of quantitative

risk assessment is not so much the production of safe

food, but an evaluation of the health status of the

population. Quantification of risks is therefore more

important when QMRA is applied for public health

purposes. By applying QMRA and using integrated

public health measures, risks of a different nature can

be compared. For example, Havelaar et al. (2000)

used this approach to compare the risks of infection

by Cryptosporidium parvum in drinking water, to the

risk of renal cell cancer as a consequence of decon-

tamination of the water. So, although both industry

and public health workers may use QMRA, HACCP

and predictive modelling techniques, they often have

different aims. This may have severe consequences

for the modelling.

Important concepts in risk assessment are ‘risk’,

‘probability’ and ‘probability distribution’. Several

definitions of risk are going around. According to

Notermans et al. (1996), risk is simply ‘the probability

that an adverse effect will occur’, whereas in the

context of QMRA, it is more precisely defined as ‘a

function of probability of an adverse health effect and

the severity of that effect, consequential to a hazard(s)

in food, (CODEX Alimentarius Commission, 1998)

or ‘the product of the likelihood of the occurrence and

the magnitude of the consequences of exposure to a

pathogen on human health’ (ILSI, 2000). In all these

definitions of risk, the term ‘probability’ (or ‘like-

lihood’) appears. This probability is a quantitative

measure, a number between zero and one expressing

the odds on an event. If a parameter or a variable can

have different values, and we know how probable

Table 1

Basic processes of the MPRM and their qualitative effect on the prevalence ( P), the number of organism in all units (Ntot) and the unit size

Effect on P

(the fraction of

contaminated units)

effect on Ntot

(the total number of

cells over all units)

Effect on

unit size

Growth = + =

Inactivation � � =

Mixing + = +

Partitioning � = �
Removal � � =

Cross-contamination + =/ + =

=: no effect.

+: an increase.

� : a decrease.
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these values are, these probabilities can be represented

by a ‘probability distribution’. In QMRA, such prob-

ability distributions play an important role (Vose,

1998).

An important aspect of probability distributions is

that they can represent either uncertainty or variability

(Hattis and Burmaster, 1994; Murphy, 1998; Ander-

son and Hattis, 1999). ‘Uncertainty’ represents the

lack of perfect knowledge of the parameter value,

which may be reduced by further measurements.

‘Variability’, on the other hand, represents a true

heterogeneity of the population that is a consequence

of the physical system and irreducible by additional

measurements. In the context of microbial growth

modelling, uncertainty may for example result from

imprecise measurements or lack of knowledge of the

effects of conditions that are not included in the

model. Variability may result from variability in

temperature, strain differences or other sources of

biological variability. As recently illustrated, the sep-

aration of uncertainty and variability, by using second

order Monte Carlo models, may be important in

QMRA (Nauta, 2000b).

All this implies that ‘probability’ is a crucial

concept in risk assessment. For safe food production,

evaluation of risk may be less important, as it ‘just’

means to keep risk low. For public health objectives,

risk has to be evaluated quantitatively, both for

reasons of comparison with other health risks and

for the evaluation of proposed risk mitigation strat-

egies (Nauta et al., 2000). A risk assessment therefore

has to incorporate probabilities throughout the analy-

sis. This may demand a special type of predictive

modelling (Nauta, 2000a).

3. Growth modelling

Bacterial growth can basically be regarded as an

increase in population size. If the aim is to assess

bacterial growth in, e.g. a MPRM processing step, we

essentially want to assess the population size (Nout) of

a pathogen at the end of a processing step, given an

initial population size (Nin) and the process itself. This

is illustrated schematically in Fig. 1.

In general, any predictive growth model has the

structure

logðNoutÞ ¼ logðNinÞ þ f ð�Þ ð1Þ

with Nin the number of cells at the beginning of the

process, Nout the number of cells at the end of the

process and f(�) an (increasing, positive) growth

function. When a number of consecutive processing

steps is considered, f(�) of a single step is equal to the

‘step characteristic’ of that step as defined by Van

Gerwen and Zwietering (1998). The growth function

f(�) can have many shapes, which are widely discussed

in predictive modelling literature (e.g. McMeekin et

al., 1993; Whiting, 1995; Van Gerwen and Zwieter-

ing, 1998). For example, for exponential growth

f(t) = lt (with t is time and l is the specific growth

rate), for the lag exponential model f(t) = l(t� k)
(with k lag time duration), and when using the

Gompertz equation f(t) = a exp[� exp(b� ct)], with

parameters a, b and c. Note that all these are ‘primary

growth models’, which are a function of time.

In general, the selection of the ‘best’ growth

model depends on the modelling purpose, process

knowledge and data availability. If, for example, a

change in the temperature regime is considered, it

will be necessary to use a ‘secondary growth model’,

which incorporates ‘temperature’ as a parameter. In

that case, the growth function f(�) will be a function

of both time and temperature. Which specific secon-

dary growth model to select for this purpose, will

depend on previous experience and the availability

of data.

As stated in the previous chapter, it is important to

realize that a quantitative microbiological growth

prediction has usually different demands than a ‘tradi-

tional’ predictive food microbiology growth model

prediction. The latter is developed to come to a

growth curve prediction, that is a series of point

estimates of population size for a time series. How-

ever, as illustrated in Fig. 2, in a QMRA model point

estimates are not sufficient. Moreover, when the

processing time is fixed, time is not a variable and it

may be irrelevant to predict the dynamics in time. As

Fig. 1. The aim of growth modelling in risk assessment is essentially

the assessment of the population size Nout at the end of a processing

step, given the initial population size Nin and the process.
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explained, risk assessment is about probabilities of

events, so here we are interested in the probability

distribution of the population size, that is the proba-

bility that a microbial population will reach a certain

level, or the probability that a certain level is reached

within a certain amount of time (Whiting, 1997;

Soboleva et al., 2000). In the terminology used here,

this means we are not so much interested in f(�) as a
function of time, but mainly in the probability dis-

tribution(s) of f(�) (the step characteristic) at the end of

the processing step (Nauta, 2000a). With some excep-

tions, for example time-to-growth models (Whiting,

1995), predictive models do not predict probabilities,

but changes in concentrations. Therefore, they cannot

be directly implemented in a QMRA.

An obvious solution to this problem may be to use

a probability distribution for Nin and predict the

probability distribution of Nout, e.g. by Monte Carlo

modelling, using a selected predictive modelling

equation. If probability distributions of model param-

eters (like l or k) are derived too, it is easy to

implement it all together in one Monte Carlo model.

This method will yield a nice looking probability

distribution of Nout. However, one should be very

careful here. Predictive models that incorporate the

effect of growth conditions on the growth curve are

usually not validated for predictions under uncertain

and/or variable conditions as in the food pathway

modelled. There is no reason to believe that the model

predictions are still correct, if point estimates are

replaced by probability distributions of the input

parameters of the model (Nauta and Dufrenne, 1999).

Two major pitfalls can be identified here. The first

is that probability distributions are mixed that should

be separated, for example because one describes

uncertainty and the other variability, or because one

describes variability within a strain, and the other

variability between strains (Nauta, 2000b). The sec-

ond is that some sources of variability and uncertainty

may be neglected. This pitfall lies in wait when

experimental data are implemented in a QMRA that

covers a broader range of strains and conditions than

used in the experiments. Sources of variability and

uncertainty are strain differences, within strain bio-

logical variability, model uncertainty, variability and

uncertainty in processing conditions, variability and

uncertainty in food composition, etc. It is very diffi-

cult to account for all this in a risk assessment model.

The consequence of the pitfalls may not only be that a

risk is assessed with a level of certainty that is heavily

overestimated, but also an improper estimate of the

risk (Nauta, 2000b).

4. Experience with a case study: additional prob-

lems

Recently, we had some experience with a case

study that was part of an EU project, a QMRA on a

sporeforming pathogen, B. cereus, in a vegetable

product (Carlin et al., 2000; Nauta, 2001). In this risk

assessment, the data allowed quantification of the

variability of the initial contamination characteristics,

and variability in time and temperature profiles along

the food pathway. As some major sources of uncer-

tainty could not be quantified, uncertainty was omit-

ted from our analysis. As explained above, for the

microbial process growth and inactivation the quanti-

fication of variability was not straightforward. Never-

theless, we intended to have an exercise in

constructing a MPRM and had to end up with a risk

estimate, so we decided to model growth and inacti-

Fig. 2. Growth is the increase in population size, given as log(Nt), as

a function of time. Predictive microbiology models typically predict

a growth curve, as given by the dashed line. In these models, growth

is considered as a function of time and the model yields a point

estimate at any point of time t. In contrast, in QMRA, we need a

model that relates the probability distribution of the population size

at the end of a process (Nout) to the probability distribution of the

initial population size (Nin). Here, the end of the process may be at a

fixed point in time. The probability distributions given by the ‘bell

curves’ represent uncertainty and/or variability in population sizes

Nin and Nout.
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vation as simple as possible within the MPRM frame-

work.

As a solution to the problems identified, we chose

to use a lag exponential growth model, fitted to

growth data of five different B. cereus strains,

acquired with the project. As time and temperature

were variable along the food pathway modelled, we

had to use a second order growth model. For this, we

selected the square root model for the specific growth

rate l and an inverse square root model for the lag

time k (Ratkowsky et al., 1982; Wijtzes et al., 1995),

all on the basis of practicability and simplicity.

l ¼ bðT � TminÞ2 ð2Þ

with b a parameter, T the temperature and Tmin the

minimum growth temperature, and

k ¼ cðT � TminÞ�2 ð3Þ

with c a parameter, so

f ðT ; tÞ ¼ bððT � TminÞ2t � cÞ ð4Þ

and

lnðNtÞ ¼ lnðN0Þ þ bððT � TminÞ2t � cÞ: ð5Þ

For each strain, the standard deviation in the

estimates of the model parameters, as derived from

the microbiological data using regression analysis,

was used to assess the variability in growth per Monte

Carlo simulation run. This is a simple, non-validated,

method, which neglects many aspects of growth

modelling for QMRA purposes, as discussed in this

paper. Among others, this method uses the uncertainty

and variability in the model parameters in Eq. (5), to

predict the variability in growth only.

The QMRA in the case study did not yield a

precise risk estimate, and had limited value for public

health purposes. However, it could identify gaps in

knowledge, was an instructive exercise in using the

MPRM methodology and even identified some prom-

ising risk mitigation strategies (Nauta, 2001).

The attempts to use predictive modelling for

QMRA taught us some interesting lessons. Not only

were the identified problems in growth modelling

confirmed, additionally it was found that: (1) the

availability of applicable predictive models for lag

time under temperature regimes with changing tem-

peratures is indispensable for QMRA modelling,

especially when consumer transport, storage and

preparation is part of the food pathway modelled;

and (2) modelling of growth and inactivation of

sporeformers requires quantitative predictive models

for spore germination and sporulation. As inactivation

models usually describe the fate of spores, and growth

models describe the fate of ‘colony forming units’,

one should be extremely careful with linking growth

and inactivation models without considering the state

of the cells.

5. Possibilities of modelling growth in QMRA

As outlined in the chapters above, it is not straight-

forward to apply the available predictive microbiol-

ogy growth models in QMRA studies. This holds

especially for QMRA studies that aim to evaluate the

status of public health with regards to a specific

hazard and/or food product. QMRA studies assess

probabilities and therefore need to use stochastic

models, preferably second order Monte Carlo models.

Predictive growth models are generally developed and

validated as models that give point estimates, not as

stochastic models.

Of course, predictive models are highly valuable

for many food safety purposes, like the development

of HACCP plans and evaluation of the safety of steps

in the food production process. Predictive models may

be considered as ‘worst case’ predictions (see, e.g.

Zwietering et al., 1996). As such, they are useful to

identify non-safe processing steps. They are however

not suited to quantify risks.

Several authors have recognised the importance of

incorporating variability in predictive growth model-

ling. In a paper on choosing probability distributions

for modelling variability in growth, Ratkowsky et al.

(1996) find that the Gamma distribution is a suitable

stochastic assumption when modelling generation

times. Soboleva et al. (2000) argue that it is not

appropriate to a priori select a probability distribution

for the population size. They develop a method to

describe the population size in time by incorporating

random errors in the parameters of the differential

equations describing growth. Marks and Coleman

(unpublished) present a way to model the natural
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variability in growth and inactivation by the applica-

tion of birth and death process dynamics. All these

approaches show that the probability distribution of

the increase in population size (that is f(�) as in Eq.

(1)) and thus the population size after growth will be

skewed, with a long tail for large population sizes. Of

course, this is particularly relevant in the context of

risks. However, the studies on stochasticity in growth,

have not yet yielded predictive models that are gen-

erally applicable in QMRA. Among others because

data fitting has not been put in the light of estimating

probability distribution parameters or separation of

uncertainty and variability. It may for example be that

the variability is skewed, but the uncertainty is not.

In risk assessment, risk estimates have to be

provided with an indication of the attendant uncer-

tainty (CODEX Alimentarius Commission, 1998).

This implies that an uncertainty analysis should be

performed, and that where possible all uncertainties in

the risk assessment should be quantified. Incorpora-

tion of such an uncertainty analysis may not only give

insight in the reliability of the risk estimate, it may

also provide a tool to identify the most important gaps

in knowledge along the food pathway and thus

address where additional research is necessary. How-

ever, like in the case study mentioned above, quanti-

fication of uncertainty may be problematic. One can

use statistics to get an uncertainty interval about some

parameter estimates, but when data are difficult to

interpret and validated models are not available, this

‘statistic uncertainty’ need not reflect the ‘real uncer-

tainty’. In that case, an evaluation of expert opinions

or scenario analysis may be used to get insight in

uncertainty (Nauta et al., 2000).

The title of this paper holds the question whether

bacterial growth modelling for QMRA is possible.

Based on the arguments given, the answer seems to

be: not yet. The development of predictive growth

models has yielded large data bases, various model-

ling techniques, and valuable insight in growth

kinetics (Whiting, 1995; USDA, 1998; Van Gerwen

and Zwietering, 1998). Especially mechanistic models

based on growth kinetics (Van Impe et al., 1992;

Baranyi and Roberts, 1994) would fit in the MPRM

philosophy. Special models should be developed with

QMRA in mind, with identification and quantification

of specific sources of variability and uncertainty.

Validation of these models may in part be possible

on the basis of available data, but new experiments

that are set up to specifically characterise variability

and uncertainty will be necessary as well. If this is

established, the power of both predictive modelling

and QMRA will be enlarged. Therefore, it can be

regarded as a major challenge for the future.
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