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Abstract

Foodborne infections are a significant cause of morbidity and mortality in human populations. Risk assessment and public
health control measures could be greatly enhanced by establishing an accurate relationship between ingested dose and infection
probability, and defining minimum infectious doses. In this paper, a novel neural network model is proposed for dose–response
of foodborne pathogens. The proposed model assumes a three-layer structure with a fast back-propagation learning algorithm.
The model predictions for four available datasets from the literature are compared using six statistical models: log-normal,
log-logistic, simple exponential, flexible exponential, Beta-Poisson and Weibull-Gamma. The methods of least square error,
maximum likelihood and correlation coefficient are used for the comparison study that shows the neural network model does
better than the statistic models. Predictions of dose–response for multiple types of pathogens and dose–response with different
host age and gender using neural network models are discussed with simulations.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Foodborne illnesses are estimated to cause as many
as 9000 deaths per year in US[9]. The cost of food-
borne illness is estimated to exceed US$ 5 billion per
year in US, and US$ 1.3 billion per year in Canada
[3]. Growing public concern over the microbiological
safety of food has prompted the government and in-
dustry to accept hazard analysis critical control point
(HACCP) as the system to ensure food safety. This
system is based on identifying the likelihood of trans-
mitting foodborne pathogens along different points in
the food chain and reducing, eliminating or control-
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ling hazards. There are many studies of quantitative
risk assessment of foodborne pathogens[2,5,8,13,18].

Dose–response modeling of microbial risks is a
key step in quantitative risk assessment for food-
borne pathogens, which provides a standard scale of
infectious potential. To conduct quantitative risk asse-
ssment for foodborne pathogens, a suitable dose–res-
ponse model is essential for estimating the probability
of infection (or illness) resulting from a certain level
of exposure. The mathematical relationship between
the ingested dose and the probability of infection (or
illness) can be applied to quantify the risk of infec-
tion by exposure to known number of bacterial cells.
However, the accurate dose–response relation is dif-
ficult to describe for two reasons: (1) the variability
in both host susceptibility and microorganism infec-
tivity; and (2) the lack of experimental data[6,9,16].
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Several statistical models have been used to describe
microbial dose–response relation. Recently, Holcomb
et al. [9] selected six statistical models in the litera-
ture: log-normal (LN), log-logistic (LL), simple expo-
nential (SE), flexible exponential (FE), Beta-Poisson
(BP) and Weibull-Gamma (WG)[6,19,20,22], to de-
scribe the dose–response of foodborne pathogens.
Holcomb et al.[9] suggested the LL and LN mod-
els are not suitable for dose–response of foodborne
pathogens due to a rejected fit. The SE and FE mod-
els have been used in risk assessment for waterborne
giardiasis [9]. The BP model is widely associated
with microbial dose–response and has been used to
model dose–response relation for several food- and
waterborne pathogens. The WG model is derived by
applying a Gamma distribution to the host–pathogen
heterogeneity and is recommended as the best statis-
tical model for dose–response relation of foodborne
pathogens[9].

Neural networks are well known for their capac-
ity to learn from real-life examples and to general-
ize the input–output relationship. Neural networks are
used to solve a wide variety of problems in science
and engineering, particularly for some areas where
the conventional modeling methods fail[24,25]. A
well-trained neural network model can be used as a
predictive model for a specific application, which is a
data processing system inspired by biological neural
system. In this paper, a neural network model is devel-
oped to describe the dose–response relation for food-
borne pathogens. Four datasets available from the liter-
ature,Shigella flexneri(Sf), Shigella dysenteriae(Sd),
Campylobacter jejuni(Cj) and Salmonella typhosa
(St) [4,9,21]are used to train the proposed neural net-
work. The model predictions are compared with four

Table 1
Dose–response datasets from literature

Sf (2a) Sd (m131) Cj (a3249) St (quailes)

Dose +/Total Dose +/Total Dose +/Total Dose +/Total

180 6/36 10 1/10 800 5/10 103 0/14
5000 33/49 200 2/4 8000 6/10 105 32/116
104 66/87 2000 7/10 9× 104 11/13 107 16/32
105 15/24 104 5/6 8 × 105 8/11 109 40/42
105 3/4 106 15/19
106 7/8 108 5/5
108 7/8

suitable statistical models (SE, FE, BP and WG) that
were applied to dose–response of foodborne pathogens
by Holcomb et al.[9] in 1999. To the best of our
knowledge, it is the first time that the dose–response
of foodborne pathogens is investigated using neural
networks.

This paper is organized as follows.Section 2
presents the methods for modeling the dose–response
relation, including the statistical models and the pro-
posed neural network model. The results using both
the statistical models and the neural network model
are presented inSection 3. Section 4discusses sev-
eral important issues in dose–response modeling,
including infection probability of food with multiple
pathogens, infection probability with the considera-
tion of age and gender, the selection of neural network
architecture, and the advantages and limitations of the
proposed neural network model. Finally, a concluding
remark is given inSection 5.

2. Methods

The commonly used methods for dose–response
prediction of the foodborne pathogens are statisti-
cal models. In this paper, a novel method, a neu-
ral network model is developed to describe the
dose–response relation. The available datasets for four
foodborne pathogens,S. flexneri, S. dysenteriae, C.
jejuni andS. typhosa[9], were obtained from feeding
studies of foodborne pathogens to human volunteers.
The subjects in these feeding studies were healthy
adults. The datasets are listed inTable 1, where the
dose is expressed in total number of colony forming
units (cfu) ingested; “+/Total” represents the number
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infected (+) and the total number exposed in feed-
ing studies (Total), respectively.Table 1also shows
the dose–response information at low doses that is
generally not available from feeding studies.

2.1. Statistical models

Holcomb et al.[9] selected six commonly used
statistical models, LN, LL, SE, FE, BP and WG,
and applied them to dose–response of foodborne
pathogens. These models are used to fit each of the
four datasets available using the maximum likelihood
method. Goodness-of-fit is assessed by comparing
the minimumY value (the definition ofY is given
in Section 4) to the appropriate tabulatedχ2 value
[9,17]. For a digested dosed, the probability of infec-
tion P using the LN, LL, SE, FE, BP and WG models
are given as follows.

The log-normal model is given as

P = φ(b0 + b1 log10d), (1)

whereφ is the cumulative normal distribution function,
b0 the intercept, andb1 the log10 d slope parameter.

The log-logistic model is given as

P = 1 +
(

1 − p

p

)
e−ε(log10d−χ), (2)

whereχ is the predicted dose at a specified value ofp,
the probability of infection; andε the curve rate value
affecting spread of curve along dose axis.

The simple exponential is given as

P = 1 − e−k log10d, (3)

wherek is the reflects host microorganism interaction
probability, specifically,k denotes fraction of microor-
ganisms ingested that survive to initiate infection.

The flexible exponential model is given as

P = 1 − pe−ε(log10d−χ1), (4)

whereχ1 is the predicted dose at a specified value of
(1 − p); andp andε the same as those inEq. (2).

The Beta-Poisson model is derived from the sim-
ple exponential that assumes a Beta distribution for
host–microorganism interaction instead of a constant.
This model is given as

P = 1 −
(

1 + d

β2

)−ε2

, (5)

whereε2 andβ2 are the parameters affecting shape of
curve.

The Weibull-Gamma model is given as

P = 1 −
(

1 + dχ3

β3

)−ε3

, (6)

whereε3, β3 andχ3 are the parameters affecting shape
of curve. Note that ifχ = 1, then this model reduces
to BP model; and ifε3 = 1, then this model reduces
to LL model.

The simulation and comparison studies by Holcomb
et al.[9] suggested that only four models, SE, FE, BP
and WG, are applicable to microbial dose–response
modeling, while the LL and LN models are not suitable
for dose–response of foodborne pathogens due to a
rejected fit[9].

2.2. Neural network model

The neural network assumes a three-layer archi-
tecture. A typical neural network model is shown in
Fig. 1. The output of the neural network has one neu-
ron representing the probability of infection, while the
ingested doses of different types of pathogens are the
inputs to the neural network. Additional factors that
also result in the probability of infection, such as age
and gender, can also be incorporated into the neural
network model, and used as the input parameters as
well.

The connection weights between neurons are ini-
tialized randomly in the region of [−1, 1]. For a typi-
cal three-layer neural network to model any nonlinear
input–output relationship, the activation function of
the hidden neurons must be a nonlinear function, oth-
erwise the neural network is reduced to a single layer
neural network[1,11]. The activation function of the
output neurons can be a linear or nonlinear function.
When a nonlinear function (e.g. sigmoid functions) is
used as the activation function, the output is bounded
to a finite interval (e.g. (0, 1) or (−1, 1) depending on
the selection of sigmoid function), and a linear scalar
function is needed at the output to normalize the tar-
get output. If a linear activation function is used, the
output can be any value and no linear scalar function
is needed. In this study, the activation function of the
hidden neurons is a nonlinear sigmoid function defined
as y = tanh(x), while the activation function of the
output neuron is a linear functiony = x (simulations
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Fig. 1. A typical neural network structure.

show that a selection of a nonlinear activation tanh(x)
at the output neuron results in the same results, but is
more computationally complicated). Thus, the neural
network outputy is given by

y =
m∑
j=0

vjhj, (7)

whereh0≡1, and variablehj is the output of thejth
hidden neuron, which is given by

hj = tanh

(
n∑
i=0

wjixi

)
, (8)

wherex0 ≡ 1, andn andm are the number of neurons
in the input and hidden layers, respectively. Variable
xi is the ith input. Parametersv andw are the neu-
ral connection weights, which are normally initialized
with a small random in the interval of [−1, 1] and will
be set to a suitable value through a learning procedure
with given data.

In this study, the fast algorithm proposed by
Karayiannis and Venetsanopoulos[11,12] is used to
train the neural network by minimizing an error func-
tion. The error function for neural network is nor-
mally defined as the squared errors, because this
definition is easier for the derivation of the learning
algorithm for the neural connection weights[11,12].
It would have a better fitting in log-likelihood if the

error function is defined in log, but the learning algo-
rithm will be much more difficult to obtain. Normally
the error convergence will not highly depend on the
method used. As shown in the comparison study in
Fig. 6, where the model predictions are evaluated
by squared errors (E), correlation coefficient (R) and
maximum likelihood estimation (Y), the predictions
using the proposed neural network model are general
better than all the statistical models, although the
learning algorithm of the neural network is obtained
by minimizing the squared errors (E). Thus, in this
study, the error function is defined as

E =
s∑

k=1

e2
k =

s∑
k=1

(tk − yk)
2, (9)

wheretk andyk are the target value and neural network
output for thekth data sample, ands the number of
all the data samples. For a given input vectorxi, i =
1, 2, . . . , n, of a data sample, the learning algorithm
modifying the connection weights is described by

vj = vj + αεohj, j = 0,1, . . . , m (10)

wji = wji + αεhj xi,

i = 0,1, . . . , n, j = 1, . . . , m (11)

where

εo = λe+ (1 − λ)tanh(βe), (12)
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Fig. 2. Predicted frequency of infection vs. log-dose forS. flexneriusing neural network model and three statistical models. The lower
panel shows an enlarged view of the model predictions in the low-dose section.
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εhj = (1 − h2
j )ε

ovj, (13)

λ = e−µ/E2
. (14)

where parameterα is the learning rate, andβ andµ
the positive constants.

3. Results

The developed neural network model is applied to
all the four available datasets. The performance of the
neural network is compared to the four statistical mod-
els by least square error (E) given inEq. (9), correla-
tion coefficient (R) and maximum likelihood estima-
tion (Y). The loss function for maximum likelihood
estimation[7,9] is given by

Y = 2
nd∑
i=1

(
Ii ln

(
Ii

TiPinf

)

+(Ti − Ii)ln

(
Ti − Ii

Ti − TiPinf

))
(15)

Fig. 3. Predicted frequency of infection vs. log-dose forS. dysenteriaeusing neural network model and four statistical models.

wherend is the number of the doses,Ii the number
of individuals infected at a dose level,Ti the total
number of individuals tested at a dose level, andPinf
the predicted risk of infection. For a model prediction,
with a smallerY, the better; a smallerE, the better;
the closerR is to 1, the better.

With the available datasets, the neural network ar-
chitecture inFig. 1 is used in our simulation studies.
It is first applied to each dataset inTable 1. Thus,
the neural network has one neuron in the input layer
to represent the ingested dose, and one neuron in the
output layer to represent the predicted frequency of
infection. The simulations suggested that a selection
of three neurons in the hidden layer is the best choice
(for details, seeSection 4). The predicted frequency
of infection byS. flexneriis shown in the upper panel
of Fig. 2 by a solid line. For comparison, the corre-
sponding prediction using three statistical models with
their best-fit parameters suggested by Holcomb et al.
[9] are also plotted inFig. 2. The SE model is not
applicable for the data points of this pathogen[9]. It
shows that the neural network prediction fits the data
very well. The least square error (E) for the seven
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Fig. 4. Predicted frequency of infection vs. log-dose forC. jejuni using neural network model and four statistical models.

Fig. 5. Predicted frequency of infection vs. log-dose forS. typhosausing neural network model and WG model.
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data samples ofS. flexneriis 0.059. The correlation
coefficient (R) between the prediction and experimen-
tal data is 0.92. Since there are no data available at
the low-dose level, human knowledge is incorporated
to get a reasonable prediction of infection frequency
in the low-dose section, an enlarged view of which
is shown in the lower panel ofFig. 2. Note that the
response using the proposed neural network model is
obviously higher than the statistical models. As there
is no data to fit at the low-dose section, human knowl-
edge is incorporated in the model training. The justi-
fication is that: (1) the response should not be zero at
the low dose as some statistical models, such as FE
model; and (2) a higher response means more precau-
tious and safer. So, such an overestimating response is
used in this paper to have a better protection of human
health. When there are low-dose data available, fu-
ture work should include those new data and consider
probable network and plausible prediction by incor-
porating Bayesian methods and statistical framework
[14,15], e.g. using a hybrid model with neural work
and statistical method[23].

The predicted frequency of infection byS. dysente-
riae, C. jejuni andS. typhosaare shown inFigs. 3–5,
respectively. Note that forS. typhosa, the WG model is
the only statistical model which fit four data samples
(seeFig. 5). It shows that the proposed neural network
model is capable of describing well the dose–response
relation of these pathogens. The least square errors
(E) for S. dysenteriae, C. jejuni and S. typhosaare
0.001, 0.027 and 0.028, respectively, while the cor-
relation coefficients (R) are 0.999, 0.959 and 0.998,
respectively.

In addition to the qualitative comparison among the
neural network model and the four statistical models
in Figs. 2–5, the performance of these models are also
quantitatively compared using maximum likelihood
estimation, least square error and correction efficient.
The comparison among the neural network model and
statistical models (SE, FE, BP and WG) for the four
foodborne pathogens is shown inFig. 6. The upper,
middle and lower panels inFig. 6show the maximum
likelihood estimate (Y), least square error (E), and cor-
relation coefficient (R), respectively. It shows that the
SE model is not applicable to the data samples ofS.
flexneriandS. typhosadue to rejected fit[9]. The FE
and BP models are not applicable to the data sam-
ples ofS. typhosa. Therefore, WG is the only model

Fig. 6. The bar graphs forY, E and R for each pathogen using
neural network model and statistical models.
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capable of fitting all the data samples of all the four
pathogens[9]. In comparison to the WG model, the
performance of the proposed neural network is gener-
ally better.

4. Discussion

The proposed neural network model is capable of
fitting all the datasets of four pathogens, generally bet-
ter than the best statistical model, the WG model. In
addition, the statistical models are unable to deal with
the case of multiple pathogens. For those statistical
models, different set of model parameters selected by
trial and error has to be used to fit different types of
pathogens using the same model. The proposed neu-
ral network is also theoretically capable of predicting
the frequency of infection for a food containing more
than one type of pathogens. After the neural network

Fig. 7. Predicted frequency of infection vs. log-dose for all the four pathogens using the unified neural network model.

model is well trained, it deals with various types of
pathogens without additional training procedures. The
proposed unified neural network assumes four input
neurons and nine hidden neurons. Since there are no
data available for frequency of infection with multi-
ple foodborne pathogens, the unified neural network
model is applied to the four datasets inTable 1. The
neural network prediction of infection frequency is
shown inFig. 7, where the model prediction is shown
in solid line, while the experimental data are shown by
dashed line. It shows that the unified neural network
architecture is capable of fitting all the datasets from
four types of pathogens. The correlation coefficients
(R) for S. flexneri, S. dysenteriae, C. jejuni andS. ty-
phosaare 0.996, 0.967, 0.997 and 0.947, respectively.

Furthermore, the proposed model is capable of in-
corporating additional factors that influence the fre-
quency of infection, such as age and gender of the host.
A neural network is designed, with the same learning
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algorithm presented inSection 2, for the prediction
of inflection with the factors of dose, age and gender.
Since there are limited data available, based on com-
mon knowledge of the age-related incident of infec-
tion, it is assumed for this study that the frequencies
of infection of children and seniors are three and two
times of the adults; the infection frequency of female is
1.2 times of the male (statistically the difference is not
so significant), with the same ingested dose. Assume
the dataset inTable 1for S. dysenteriaeis for adult
male. The neural network has three input neurons that
represents the dose, age (adult= 1; senior= 2; chil-
dren= 3), and gender (male= 1; female= 2). Three
neurons are selected in the hidden layer. Model pre-
diction of the inflection frequency with log-dose, age
and gender is shown inFig. 8. It shows that the model
prediction is reasonably well.

Theoretically a three-layer neural network can
model any nonlinear functions at any accuracy, pro-
vided enough number of neurons in the hidden layer
and enough training/learning time[10,11]. However,
the open questions in practical implementation are the
selections of training algorithm and model parameters
(e.g. number of hidden neurons, activation functions,

Fig. 8. Predicted frequency of infection vs. log-dose byS. dysenteriaefor different ages and genders.

learning rate, momentum, etc.) to guarantee the er-
ror to converge to a desired small number. When a
three-layer neural network model is used to model the
input–output relation of a specific problem, the num-
ber of input neurons in the input layer (also called first
layer) is the number of inputs, while the number of out-
put neurons in the last layer is the number of outputs.
The number of hidden neurons can be selected with
some flexibility, which determines how well a dataset
can be learned. Too many hidden neurons will tend
to memorize the problem, and thus do not generalize
the input–output relationship. This is the so-called
“over-fitting” problem. If the number of hidden neu-
rons used is not enough, the network will generalize
the relationship well but may not have enough “power”
to learn the patterns well at a satisfactory accuracy.
This the so-called “under-fitting” problem. Therefore,
in practice the number of neurons in the hidden layer
is mainly selected by trial and error, as there are some
suggestions available, but no general methods avail-
able for an optimal selection of hidden neurons[10].
In this study, a series of simulations using the data
of S. dysenteriaewere conducted, where the hidden
neurons were selected as 2, 3, 4 and 5, respectively.
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The simulation results show that two hidden neurons
cannot accurately fit the datasets, i.e. the under-fitting
occurs. The datasets can be fitted satisfactory with
three hidden neurons. When four and five hidden neu-
rons are used, although the least square error (E) is a
little bit smaller, but the generated input–output curve
is not as smooth as that with three hidden neurons,
i.e. over-fitting occurs. So in this study, three hidden
neurons are used for all available data.

When neural network is used to model an input–
output relation, as any other modeling methods, it re-
quires suitable data to train the neural network, such
that it can learn the relationship. The lack of data is a
common limitation for both the neural network model
and the statistical models. Because of the ethical con-
siderations, it is unlikely that adequate human data for
dose–response will become available for highly infec-
tious pathogens. An obvious alternative is the use of
animal data. However, animal data must be carefully
reviewed for the applicability to human, due to the in-
herent variability in host–microorganism interaction.
Unlike the statistical models where all the model pa-
rameters are selected by trial and error, the neural net-
work model is capable of automatically obtaining the
neural connection weights through learning. However,
the statistical models have less parameters to be set
in comparison to the number of weights in the neural
network model.

5. Conclusion

In this paper, a novel neural network model is pro-
posed for dose–response of foodborne pathogens. The
predictions using neural networks are better than the
statistical models in the literature. In addition, it has
good flexibility and can deal with dose–responses for
more than one type of pathogen in a food. Further-
more, the proposed neural network model is capable
of incorporating additional factors that influence the
inflection frequency, such as age, in addition to the di-
gested dose. Similar to the statistical models, the lim-
itation and difficulty of the development of a better
neural network is the lack of experimental data. The
quality of a neural network model for dose–response
highly depends on an understanding from the biologi-
cal point of view and the experimental data available.
The investigation on dose–response relationships us-

ing neural networks not only provides an alternative,
flexible, accurate model for prediction of inflection
for various types of pathogens, but also offers insights
into methodologies for quantitative risk assessment of
foodborne pathogens.
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