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Validating and comparing predictive models
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Abstract

The bias and accuracy factors introduced by Ross [Ross, T., 1996. Indices for performance evaluation of predictive models
in food microbiology. J. Appl Bacteriol. 81, 501–508] for the evaluation of the performance of models in ‘predictive food
microbiology’ are refined by basing the calculation of those measures on the mean square differences between predictions
and observations. The use of the indices is extended by presenting formulae and methods which enable evaluation of the
difference between alternative models for growth of an organism of interest over a domain of environmental factors. This is
done by calculating the integral mean of the square differences between the models under investigation over the domain of
the environmental variables common to those models, or a sub-region of it. The use of the techniques is exemplified by
evaluating the difference between four published models for the growth rate of psychrotrophic pseudomonads.  1999
Elsevier Science B.V. All rights reserved.

1. Introduction microbiology, such as providing tools for HACCP
implementation and for exposure assessment in

Predictive microbiology is based upon the premise microbial risk assessment (Cassin et al., 1998), and
that the responses of populations of micro-organisms decision support in many aspects of the management
to environmental factors are reproducible, and that, of microbial food safety and quality. (Ross and
by characterising environments in terms of identifi- McMeekin, 1994; Whiting and Buchanan, 1996).
able, dominant factors which control growth re- Reflecting the development of the field from a
sponses, it is possible, from past observations, to largely descriptive exercise into a more investigative
predict the responses of those micro-organisms in scientific pursuit, McMeekin et al. (1997) proposed
other, similar, environments (Ross and McMeekin, the term ‘quantitative microbial ecology of foods’ as
1994). Proponents claim that predictive microbiol- a more apt, albeit less wieldy, description of this
ogy offers many benefits to the practice of food field of research.

Predictive microbiology models are, typically,
generated in liquid laboratory culture media. Ross*Corresponding author. Tel.: 144-118-935-7135; fax: 144-
(1996) proposed measures of the performance of118-935-7222.
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ogy. The objective of those performance measures et al., 1991; Gill and Jones, 1992; Neumeyer et al.,
was to enable the assessment of the reliability of 1997) will be evaluated.
such models when compared to observations not When comparing these models for the growth rate
used to generate the model, particularly in foods, and of the same group of organisms, supported by
hence to evaluate their utility to assist in food safety observations made in different laboratories and under
and quality decisions. A further objective was to various experimental conditions, one develops a
provide a simple and quantitative measure of model picture of the variability of the effects of those
reliability. Those indices were termed the bias factor factors (e.g. composition of media). Those factors are
and accuracy factor, but were suggested ‘as a first sometimes ignored in model development, either
step towards the development of an objective and because they are considered insignificant, because
useful definition of the term ‘validated model’ ’’. they are inherently random or because our present
Ross (1996) also foreshadowed that modifications knowledge is inadequate to quantify them with
and refinements to those indices might be proposed. sufficient accuracy. A classification of the sources of

In this paper, the accuracy and bias indices are inaccuracy in predictive models can be found in
modified and generalised to enable comparison of Baranyi and Roberts (1995).
growth models with each other as well as with
observations. The model to be analysed will be that
of Pin and Baranyi (1998), for organisms causing the 2. Materials and methods
aerobic spoilage of refrigerated meat. It is a generic
spoilage model describing the maximum specific 2.1. Quantification of discrepancy between model
growth rates of the dominant organisms (Pseudo- and observation
monas spp.) during spoilage, as a function of tem-
perature and pH. In addition, the difference between It is common to plot predicted growth parameters
that model and four other published models for the against their observed values to demonstrate the
growth rate of Pseudomonas spp. (Davey, 1989; Fu performance of a model (Fig. 1). If the points

Fig. 1. Typical representation of predicted against observed values. The difference of a plotted point from the line of equivalence is an
accuracy measure of that particular prediction.
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obtained this way are on the line of equivalence then is consistent with the least squares algorithm of
the predictions are exact. The difference between a fitting models to observed values of Ln m, as shown
point and the line of equivalence is a measure of the below.
inaccuracy of the respective prediction.

Because the concept of relative error (the ratio 2.1.1. Discrete case
(1) (2) (m)between the error and the value of the prediction) is If m observations, m , m , . . . , m are made

more frequently used in practice, the ‘predictions randomly in the environmental region R, then the
versus observations’ are commonly plotted on the accuracy factor for the model f can be estimated by:
log scale. Thus, we define our performance in-

]]]]]]]mdicators by means of the (natural) logarithm trans-
2(k) (k)OsLn f(x ) 2 Ln m dformation. The growth parameter chosen for com-

k51parison is the maximum specific growth rate, m, as a 1 ]]]]]]]2A 5 exp (1a)f œ m
function of the environmental factors which are the
independent variables of the model. Note that if the Ln f(x) function was fitted to the

(i)Suppose that the specific growth rate is modelled Ln m observations by the least squares method,
by the function, f (x), where then Ln A is equal to, apart from the degree off

freedom in the denominator, the standard error ofx 5 [x , x , . . . , x ]1 2 n
that fit.

is the vector of the environmental factors whose Our estimation of the bias factor is compatible
effects are modelled, and f is defined in a region, R, with that of Ross (1996), and for the model f is
of those environmental factors. An example for n52 given by:
factors is: x 5temperature, x 5pH.1 2

mWe seek to quantify how well f approximates a set (k) (k)OsLn f(x ) 2 Ln m dof m values which are derived from a set of m
k51(1) (2) (m) ]]]]]]]B 5 exp (1b)1 2observations: m , m , . . . , m , at the f m

(i ) ( i) ( i) ( i)x 5 [x , x , . . . , x ] (i 5 1, 2, . . . , m)1 2 n It is worth noting that if the doubling time5Ln
2/m is modelled in a similar way, the best fit is givenenvironmental factor combinations (discrete case), or
by the Ln 2/f (x) model and the accuracy and biasby another function, m 5g(x), interpreted in the same
factors do not change.environmental region (continuous case).

Consider the environmental vector x as a random
variable distributed in the region R. Let the random 2.1.2. Continuous case
variable X be defined as: Suppose also that another model m5g(x) is given

to predict the maximum specific growth rate of anX 5 Ln f(x) 2 Ln m
organism. In this case, the accuracy factor of f
compared to g can be estimated by the integral meanThe definition of the accuracy factor A of Rossf of the square differences between f and g:(1996) is equivalent to the formula A 5 exp(E(uXu),f

where E(.) denotes the expected value (i.e. the mean) A 5f, g
of the argument in parentheses. We suggest a modi- ]]]]]]]]]]]
fication of that definition to: 2E(Ln f(x , . . . , x ) 2 Ln g(x , . . . ,x )) dx . . . dx1 n 1 n 1 n

]]2 Rs dA 5 exp E(X ) ]]]]]]]]]]]expœf 1 2V(R)œ
(2a)The formula we suggest for the Bias Factor (B ) isf where V(R) is the volume of the R region: V(R) 5 eRequivalent to that of Ross (1996), i.e:

1 dx . . . dx . For example, if R is a temperature1 n

B 5 exp E(X) interval, R5[T , T ], then V(R)5T 2T .s df 1 2 2 1

In the continuous case, the definition of the bias
The advantage of the modified definition is that it factor for f compared to g leads to the formula:
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the incubation temperature, and bacteria enumeratedE Ln f(x , . . . , x ) 2 Ln g(x , . . . , x ) dx . . . dxs d1 n 1 n 1 n by plating on Tryptone Soya Agar (TSA, Oxoid CM
R
]]]]]]]]]]]B 5 exp 131) for total viable counts, and Cetrimide Fusidinf, g 1 2V(R)

Cephaloridine agar (CFC, Oxoid CM559, SR 103)
(2b)

for Pseudomonas spp. Colonies were visible on theseFor an accuracy factor A , let the valuef
media after 24 h at 258C, and increased only in size,

%D 5 (A 2 1) ? 100% not number, with longer incubation. Thus, platesf f

were incubated for at least 24 h, but up to 72 h, at
be called the ‘per cent discrepancy’ between the 258C.
model and observations (discrete case); or, between
two models (continuous case).

2.3. Fitting growth curvesIf a bias factor B is given, then letf

%B 5 sgn Ln B ? exp Ln B 2 1 ? 100% The time dependencies of the bacterial loads onu us d s df f f

the meats, i.e. the bacterial growth curves, were fitted
be called the ‘per cent bias’, where sgn() is the sign by the model of Baranyi and Roberts (1994).
function interpreted as:

1 1 if b . 0 2.4. Measuring the discrepancy from M(G)
sgn(b) 5 0 if b 5 0H

2 1 if b , 0 The model of Pin and Baranyi (1998), presented
below, was denoted by M(G) in that paper and weThe role of the sgn(Ln B) factor is to indicate
continue to use that notation in what follows. Thatwhether the overall bias is negative or positive. If
model was found general enough to satisfactorily%B .0 then, on average, f predicts faster growthf
describe the growth of pseudomonads both in isola-than the observations (discrete case) or the g model
tion and mixed with other spoilage organisms in(continuous case).
tryptone soya broth. The newly proposed dis-For practical situations, the above integrals can be
crepancy and bias indices were calculated for M(G)most readily calculated by numerical algorithms. A
compared with models for the growth rates ofprogram from the Numerical Recipes (Press et al.,
Pseudomonas spp. presented by:1990) was used to estimate the A and B valuesf, g f, g

presented in this paper.
• Davey (1989), based on growth on ox muscle;The per cent discrepancy cannot be negative, and
• Fu et al. (1991), where the growth substrate wasit is zero if and only if all the predictions are equal to

dehydrated non-fat dried milk;.the observations (perfect fit), when the per cent bias
• Gill and Jones (1992), derived from growth onis zero, too. The per cent bias, however, can be zero

meat, in milk and in laboratory media; andeven if the accuracy is very poor.
• the model of Neumeyer et al. (1997), based on

growth in laboratory media.2.2. Preparation of naturally contaminated meat

Three samples of minced beef were purchased From those published models, the maximum spe-
from three local butchers’ shops. Each sample was cific growth rates (m) were calculated, when neces-
divided into units of 5 g which were packaged in sary. The formulae derived are:
sterile bags and sealed. Twenty-five to thirty 5g Pin and Baranyi (1998):
sub-samples were prepared for each growth curve

2
m 5 exp(212.65 1 0.004234 3 Temp 2 0.3024determination.

2For each sample of minced beef the pH, a andw 3 pH 1 0.01535 3 Temp 3 pH 2 0.004356
initial bacterial load were determined from one of the

3 Temp 1 3.467 3 pH ) (3)5 g samples. The remaining 5g sample units were
incubated at 2, 5, 8 and 118C. Samples units were
withdrawn at appropriate intervals, dependent upon Davey (1989):
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5 measured, by the viable counts technique, at about10
]]]]m 5 exp 2 919.54 1 1.6033 3 10% accuracy. This is in accord with the estimatedF Temp 1 273

standard errors of the maximum specific growth rates
7 obtained when the individual growth curves were10

]]]]2 2.3784 3 1 1317.7 3 a2 w fitted by the model of Baranyi and Roberts (1994).(Temp 1 273)
Those standard errors were always 5–15% of fitted

2 value of the parameter, i.e. se(m) /m ¯0.1.2 669 3 a (4)Gw The per cent bias between M(G) and the data used
to create M(G) was zero. This is a consequence of

Fu et al. (1991): the well-known properties of the least squares meth-
2 od for fitting models to data. Namely, because ourm 5 0.0306 3 Temp 1 7.85 (5)f s d g

definition for the bias indicator uses logarithm
transformations and the regression of Pin andGill and Jones (1992):
Baranyi (1998) was carried out minimising the sum

2m 5 ln 2 3 0.033 3 Temp 1 0.27 (6)s d of squared differences between the logarithms of
model predictions and observations, so the bias to

Neumeyer et al. (1997): the data used for building the model must, by
]]] 2 definition, be zero.m 5 ln2 3 0.1539 3 Temp 1 7.7 3 a 2 0.947f gs d œ w

Table 1 shows the per cent discrepancy between
(7)

M(G) and the other models for Pseudomonas spp.
The model of Neumeyer et al. (1997) and Gill and

The common environmental domain, R, used for Jones (1992) were quite close to M(G) with per cent
this comparative study, was the temperature interval discrepancies of 8.8% and 12.9%, respectively. Note
from 2 to 118C. The pH and a were fixed at 5.8 andw that these discrepancies are inside or around the 12%
0.995, respectively, i.e. the measured values of pH error margin of the model of Pin and Baranyi (1998)
and water activity of the minced meat. to the data used to create it. Thus, these three models

The predictions given by M(G) were also com- are very consistent.
pared with the maximum specific growth rates of The model M(G) deviated most (43.6%) from that
pseudomonads occurring in natural contaminated of Davey (1989). M(G) showed negative bias from
meat. In this case, the per cent discrepancy and bias all the other models but in the case of Neumeyer et
(%D, %B) were calculated as defined for the discrete al. (1997) and Gill and Jones (1992), the growth
case using the Eqs. 1a and 1b. rates predicted by the other models were only

slightly faster than those predicted by M(G), as
might be expected from the %B values. The predic-

3. Results tions of Davey (1989) and Fu et al. (1991) were
much faster.

Pin and Baranyi (1998) fitted the natural logarithm The per cent discrepancy between the model
of their maximum specific growth rate data against M(G) and the growth rates in natural meat (Table 2)
temperature and pH, and obtained 0.126 as the was 46.3%, while the per cent bias was 35.5%
standard error of the fit. They fitted 6 parameters on
36 observations, therefore the accuracy factor with

Table 1respect to the data they based their model on was
Per cent discrepancy and bias between the model M(G) of Pin and

]]] Baranyi (1998) and other published models for the maximum20.126 ? 30 specific growth rates of pseudomonadsS D]]]A 5 exp 5 1.12f œ 36
Models described by % D % Bf,g f,g

Accordingly, the per cent discrepancy between Davey (1989) 44.5 243.6
Fu et al. (1991) 32.6 231.8M(G) and the data used to create M(G) was 12%.

2 Gill and Jones (1992) 12.9 211.4The R percentage of that fit was good (94%), so we
Neumeyer et al. (1997) 8.8 26.3deduce that the maximum specific growth rate can be
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Table 2 higher than those of the total viable population. Note,
Initial logcounts in three samples of naturally contaminated beef however, that the initial counts of the three samples
mince plated on TSA and on CFC

of naturally contaminated meat on TSA were higher
7Sample 1 Sample 2 Sample 3 than 10 cfu /ml while the initial counts on CFC

(log cfu /ml) (log cfu /ml) (log cfu /ml) 5 6were about 5.10 cfu /ml in two samples and 5.10
TSA 7.59 7.25 7.04 cfu /ml in the third case (Table 2).
CFC 5.55 6.43 5.34

Table 3 4. Discussion
Per cent discrepancy and bias between the model M(G) of Pin and
Baranyi (1998) and the maximum specific growth rates observed The discrepancies between M(G) and the models
in three samples of naturally contaminated meat

of Neumeyer et al. (1997) and of Gill and Jones
% D % Bf,g f,g (1992) were small. We have not been able to identify

Meat sample 1 67.2 61.8 the reasons why the other two models give 30–40%
Meat sample 2 41.3 37.3 higher growth rates.
Meat sample 3 25.3 11.9 Predictive models based on microbial growth data

measured in laboratory media commonly overesti-Average 46.3 35.5
mate the growth rates of micro-organisms observed
in food, and we assume the laboratory media is, in

(Table 3). Therefore the laboratory-media-produced most cases, optimal for growth. Nonetheless, the %
M(G) overestimates the growth rates observed in Discrepancy and % Bias indices for the M(G) model
meat (see Fig. 2). This overestimation is even more compared to naturally contaminated meat merit
pronounced for the other models. comment. Commercially available minced meat at

The growth rates of pseudomonads seem to be retail often has a high initial concentration of spoil-

Fig. 2. Specific growth rate model M(G) of Pin and Baranyi (1998) and other published models for pseudomonads (continuous lines)
against observations in three samples of naturally contaminated meat.
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age organisms. This is shown in Table 2. Under therefore
these conditions, the meat may contain growth-re-

2 2[E(X)] < E(X ).tarding levels of metabolites. The data in Table 2
also show that pseudomonads were only a small
element of the initial microbiota and it should be Consequently, if one model consistently overesti-
noted that the growth rate of pseudomonads in the mates the observations, or provides higher predic-
three samples used in this study (see Table 4) was, tions than another model, then the absolute values of
generally, inversely related to the initial level of the discrepancy and bias indicators are close to each
contamination of those samples. Taken together other, the latter being somewhat smaller. This was
these observations suggest that the growth rate of observed in all our comparisons.
pseudomonads in the samples was limited by the The integral formula for comparing two predictive
activity or metabolites of the high numbers of other models provides a good theoretical basis but, in
organisms, and may explain the values of the % practice, is rarely worth calculating explicitly. If the
Discrepancy and % Bias indices for M(G) in this user has access to spreadsheet software, the follow-
case. ing method provides a reasonable approximation.

Both the accuracy and bias factors are, in some Choose a matrix and imagine the values of the
sense, average values, but they are defined using environmental factors as forming a grid of equal
different concepts of ‘average’. The accuracy factor intervals. Consider the g-model predictions at the
is based on ‘mean square differences’, while the bias grid-values of the environmental factors as observa-
factor is based on the ‘arithmetical mean of the tions. Calculate the discrepancy factor according to
differences’. One advantage of the new definition of the first, discrete definition (Eq. 1a). Repeat the
the accuracy factor is that, applied to the data on procedure with double the number of values of each
which the model is based, it directly relates to the variable in the grid. If the new accuracy factor is
goodness of fit, inasmuch as the least squares method

close enough to the first one, then accept the latter
was used to fit the logarithm of the specific rates.

one as a sufficiently good approximation of the
This did not hold for the accuracy factor definition of

integral.
Ross (1996). However, with the new definition,

In the definitions of discrepancy and bias indices,
accuracy and bias factors cannot be the same values,

we used the inverse function-pairs, Ln(x) and exp(x).
unlike in the case of Ross (1996), where they are

This is a question of personal preference, the result is
identical, if the sign of the difference (prediction- xthe same as using the pairs log (x) and 10 as10observation) is constant in the studied region.

demonstrated by Ross (1996).
It is well known that for a random variable, X, that

In conclusion, the definitions of the new bias and
if

accuracy factors are consistent with established
2 2 20 # Var (X) 5 E([X 2 (E(X)] ) 5 E(X ) 2 [E(X)] measures of goodness-of-fit. The modified definitions

Table 4
Maximum specific growth rates (m) in three samples of naturally contaminated meat plated on TSA and CFC

Temperature

28C 58C 88C 118C

m(1 /h) SE m(1 /h) SE m(1 /h) SE m(1 /h) SE

Sample 1:
TSA 0.03 0.003 0.03 0.004 0.04 0.005 0.05 0.005
CFC 0.06 0.004 0.08 0.003 0.09 0.004 0.14 0.004
Sample 2:
TSA 0.04 0.003 0.04 0.003 0.06 0.006 0.11 0.012
CFC 0.06 0.003 0.08 0.008 0.15 0.021 0.17 0.013
Sample 3:
TSA 0.03 0.003 0.04 0.004 0.06 0.007 0.10 0.006
CFC 0.08 0.009 0.11 0.014 0.16 0.013 0.18 0.007
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