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Abstract

The usefulness of risk assessment is limited by its ability or inability to model and evaluate risk uncertainty and

variability separately. A key factor of variability and uncertainty in microbial risk assessment could be growth variability

between strains and growth model parameter uncertainty. In this paper, we propose a Bayesian procedure for growth

parameter estimation which makes it possible to separate these two components by means of hyperparameters. This model

incorporates in a single step the logistic equation with delay as a primary growth model and the cardinal temperature

equation as a secondary growth model. The estimation of Listeria monocytogenes growth parameters in milk using

literature data is proposed as a detailed application. While this model should be applied on genuine data, it is highlighted

that the proposed approach may be convenient for estimating the variability and uncertainty of growth parameters

separately, using a complete predictive microbiology model.
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1. Introduction

Risk assessment is increasingly being used as a

tool to evaluate food safety and public health hazards.

This concept is now being recommended and applied

for international trade purposes by international

organisations such as the Codex alimentarius, the

Food and Agriculture Organisation and the World

Health Organisation (FAO-WHO, 1997; Codex Com-

mittee on Food Hygiene, 2000).

Quantitative risk assessment is generally based on

a mathematical and statistical model of risk agent

behaviour through a considered chain of processes

(Marks et al., 1998). Risk assessment associated with

a microbial hazard is somewhat complicated by the

potential growth or decrease in the bacterial popula-

tion according to the microenvironment, from food

production to ingestion. Several mathematical models

have been developed in the last few decades to

describe and predict the growth of microorganism

populations according to environmental factors (Rat-

kowsky et al., 1982; Rosso et al., 1995; van Gerwen

and Zwietering, 1998). These models should then be

included in microbial food safety risk assessment,
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either in a simplified form (Peeler and Bunning, 1994;

Farber et al., 1996; Bemrah et al., 1998) or in their full

form (Delignette-Muller and Rosso, 2000), as long as

good estimates are available for all their parameters.

The precision of a quantitative risk assessment

lies in its ability to reflect and evaluate the ‘varia-

bility’ and the ‘uncertainty’ of the risk estimate

separately (Lammerding, 1997; Vose, 2000). In the

field of risk analysis, ‘uncertainty’ is defined as the

lack of perfect knowledge of a given variate value.

It may generally be reduced by further experimental

or sampling investigations. ‘Variability’ represents

the true heterogeneity of a population irreducible by

additional measurements (Anderson and Hattis,

1999). It corresponds to the well-known ‘biological

variability.’ The separation of uncertainty and vari-

ability as sources of variation in model parameters

has been shown to be an important issue in micro-

bial risk assessment (Nauta, 2000).

One key source of microbial risk variability and

uncertainty may be microbial growth variability and

uncertainty (Delignette-Muller and Rosso, 2000). The

bacterial population growth process is obviously vari-

able: the growth curve observed for one strain may not

be the same as that of another strain, even when all

growth conditions are similar. So a main source of

variability could be the strain effect (Begot et al., 1997;

Nauta and Dufrenne, 1999). The characterisation of the

growth process is also clearly uncertain: the most

obvious source of uncertainty is related to microbial

measurements that are definitely imperfect. In most

published microbial risk assessments, although uncer-

tainty and variability are both mentioned as sources of

variation, they are treated alike (Nauta, 2000). Better

growth model parameter estimation for risk assessment

purposes should be able to separately evaluate the

variability and uncertainty of the estimates. The aim

of this study was to propose a way of meeting this

challenge that is based on a Bayesian approach.

In a Bayesian framework, model parameters are

random variates and not fixed as in other standard

statistical approaches. Three steps can be distin-

guished: (i) a model is built, where each parameter is

related to other parameters and variates until what we

called ‘terminal parameters’ are reached; (ii) prior

distributions over all terminal parameters are specified.

They reflect the state of knowledge available before

analysing the data set. Uninformative prior distribu-

tions are used when little is known about the parame-

ters; (iii) posterior distributions over all parameters are

computed using Bayes’ theorem, combining prior dis-

tributions and observed data: less informative are prior

distributions and more weight is given to the data in

posterior density determination. Posterior distributions

contain updated beliefs about model parameters; they

can be used as the new state of knowledge for future

studies. Details on Bayesian theory can be found for

instance in Carlin and Louis (2000).

Variability and uncertainty concepts for a given

parameter of interest will be modelled by means of

hyperparameters. The variability of the parameter is

considered to be determined by the conditional distri-

bution of the parameter given the pivot values of the

parameters defining its distribution. These latter param-

eters are denoted by the hyperparameters of the former

parameter. As an example, if one assumes that param-

eter variability within a population can be modelled

through a normal distribution, then the expected value

and standard deviation of this distribution would be the

hyperparameters. When the distributions of the hyper-

parameters are taken into account, then variability and

uncertainty are modelled. In other words, uncertainty is

modelled because the hyperparameters are random

variates. Application to a case study is proposed below.

Listeria monocytogenes is a well-known foodborne

pathogen that has been studied extensively since the

first major recognised outbreak in the early 1980s

(Schlech et al., 1983). The health and economic con-

sequences of listeriosis support the development of risk

analysis. The example detailed is the estimation of L.

monocytogenes population growth in milk using liter-

ature data.

2. Materials and methods

2.1. Data

Growth curves have been selected from the liter-

ature according to the following criteria: (i) growth

curves of L. monocytogeneswere obtained in skimmed,

partially skimmed or whole milk, without adding any

substances, in a constant temperature environment; (ii)

growth curves were estimated from viable counts; (iii)

graphs or raw data were included in the original article.

Twelve publications were selected including a total of
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124 growth curves (Table 1). When necessary, graphs

were scanned and individual points digitalised.

Two L. monocytogenes strains were considered

different if (i) they were considered different in a given

paper or (ii) they were studied in different papers. For

example, a Scott A strain used in a paper was obviously

considered different from a CA strain used in the same

paper, but a Scott A strain was systematically consid-

ered different from another Scott A strain if the growth

curves were taken from different papers. The i column

of Table 1 shows the index value of the 22 studied

strains found in this review.

2.2. Model

We assume that kinetics are identical in skimmed,

partially skimmed or whole milk media (Donnelly and

Briggs, 1986; Rosenow and Marth, 1987b; Marshall

and Schmidt, 1988; Augustin and Carlier, 2000). We

also assume that temperature T is the only varying

environmental parameter influencing L. monocyto-

genes population growth in these papers.

2.2.1. Predictive microbiology model

The predictive microbiology model may be split

into a ‘primary’ and a ‘secondary’ model. Primary

models describe the kinetics of bacterial population

growth. The primary model used was the logistic

equation with delay, i.e. a transition between the lag

phase and the exponential phase considered to be

instantaneous (Kono, 1968; Baranyi et al., 1993;

Rosso, 1995). It can be written as follows:

Y ðtÞ ¼ PMt þ ePM ð1Þ

where Y(t) is the logarithm of the bacterial concen-

tration at instant t, ePM the model error and

PMt ¼

y0; tVkðTÞ

ymax � logf1þ ½expðymax � y0Þ � 1�
	exp½�lmaxðTÞðt � kðTÞÞ�g; t > kðTÞ

8>>><
>>>:

ð2Þ

where y0 is the logarithm of the initial bacterial

concentration [unit: log(cfu ml� 1)], ymax the loga-

rithm of the maximal achievable concentration in the

culture media [unit: log(cfu ml � 1)], k(T) the lag

time (unit: h) at temperature T and lmax(T) the

maximum specific growth rate (unit: h� 1) at tempe-

rature T.

Secondary models describe the effect of growth

environment on the set of primary model parameters.

The change in lmax as a function of temperature T

may be fitted using the secondary cardinal model of

Rosso et al. (1993):

lmaxðTÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
SM1T

p
þ eSM1Þ2 ð3Þ

where eSM1 is the model error and SM1T is a function

of T defined as:

SM1T ¼

0; Tg½Tmin; Tmax�

h
loptðT � TmaxÞðT � TminÞ2

i
.h

ðTopt � TminÞ½ðTopt � TminÞ
ðT � ToptÞ � ðTopt � TmaxÞ

ðTopt þ Tmin � 2TÞ�
i
; Ta½Tmin; Tmax�

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

where lopt is the highest lmax(T) value achievable in

the milk, Tmin the temperature below which no growth

occurs (unit: jC), Tmax the temperature above which

no growth occurs (unit: jC) and Topt the optimal

temperature (unit: jC), i.e. the temperature at which

lmax(T) is the highest and equal to lopt if model error

is neglected. The square root transformation for lmax

is chosen for stabilising the variance (Zwietering et

al., 1990; Schaffner, 1994).

The change in k according to the temperature is

modelled using the relationship:

1nðkðTÞlmaxðTÞÞ ¼ 1nðKÞ þ eSM2

which may be written as:

kðTÞ ¼ expð1nðKÞ þ eSM2Þ
lmaxðTÞ

ð5Þ
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Table 1

Growth database for L. monocytogenes in milk

Ref. Fig. Strain i T (jC) Milk Nn t Yn(t)

El-Gazzar

et al. (1991)

1a V7 1 4 skimmed 7 0, 144, 240, 408, 480,

648, 720

3.98, 4.91, 6.11, 5.89, 5.76,

5.28, 6.46

1c CA 2 4 skimmed 7 0, 144, 240, 408, 480,

648, 720

3.8, 5.15, 6.4, 6.56, 7.33,

7.52, 6.69

1b V7 1 4 skimmed 6 0, 168, 264, 408,

504, 672

3.79, 3.28, 3.01, 3.91,

5.77, 6.91

1c CA 2 4 skimmed 6 0, 168, 264, 408,

504, 672

3.99, 3.13, 4.71, 5.07,

6.33, 7.25

2a V7 1 32 skimmed 6 0, 6, 12, 24, 30, 36 5.19, 5.92, 7.57, 8.42,

8.49, 8.55

2c CA 2 32 skimmed 6 0, 6, 12, 24, 30, 36 5.24, 6.38, 7.89, 8.37,

8.49, 8.56

2b V7 1 32 skimmed 6 0, 6, 12, 24, 30, 36 5.06, 6.02, 7.58, 8.42,

8.53, 8.53

2d CA 2 32 skimmed 6 0, 6, 12, 24, 30, 36 5.14, 6.33, 7.68, 8.34,

8.4, 8.34,

3a V7 1 40 skimmed 6 0, 6, 12, 24, 30, 36 5.32, 6.44, 7.76, 8.35,

8.46, 8.38

3c CA 2 40 skimmed 6 0, 6, 12, 24, 30, 36 5.12, 6.16, 7.27, 8.6,

8.2, 8.18

3b V7 1 40 skimmed 6 0, 6, 12, 24, 30, 36 5.2, 6.64, 7.83, 8.34,

8.43, 8.43

3d CA 2 40 skimmed 6 0, 6, 12, 24, 30, 36 5.14, 6.67, 7.76, 8.19,

8.22, 8.29

Pearson and

Marth (1990)

1 V7 3 13 skimmed 9 0, 12, 36, 60, 84, 108,

132, 156, 180

2.98, 2.86, 4.36, 6.06, 7.04,

7.86, 8.2, 8.39, 8.39

2 V7 3 13 skimmed 9 0, 12, 36, 60, 84, 108,

132, 156, 180

3, 2.93, 4.42, 6.02,

7.06, 7.87, 8.22, 8.41, 8.38

6a V7 3 30 skimmed 10 0, 3, 6, 9, 12, 15, 18,

24, 30, 36

2.98, 3.24, 4.3, 5.43, 6.26,

7.21, 7.52, 7.81, 7.9, 7.9

6b V7 3 30 skimmed 12 0, 3, 6, 9, 12, 15, 18,

24, 27, 30, 33, 36

2.95, 3.26, 4.16, 5.19, 6.14,

6.87, 7.42, 7.93, 7.95, 8.01,

8.18, 8.13

6c V7 3 30 skimmed 9 0, 3, 6, 9, 12, 15, 18,

21, 24

3.03, 3.34, 4.28, 5.48, 6.69,

7.34, 7.83, 7.92, 8.1

6d V7 3 30 skimmed 9 0, 3, 6, 9, 12, 15, 18,

20, 24

3.07, 3.33, 4.31, 5.34,

6.28, 6.97, 7.66, 7.91, 8.26

7a V7 3 30 skimmed 11 0, 3, 6, 9, 12, 18, 21,

24, 27, 30, 33

3.14, 3.42, 4.33, 5.5,

6.86, 7.61, 7.72, 7.75,

7.8, 7.69, 8.06

7b V7 3 30 skimmed 11 0, 3, 6, 9, 12, 18, 21,

24, 27, 30, 33

3.04, 3.23, 4.14, 5.15,

6.16, 7.37,

7.76, 7.95, 8.06, 8.22, 8.38

7c V7 3 30 skimmed 11 0, 3, 6, 9, 12, 18, 21,

24, 27, 30, 33

3.02, 3.42, 4.36, 5.52, 6.52,

7.68, 7.85, 7.87, 7.86,

7.89, 7.72

7d V7 3 30 skimmed 11 0, 3, 6, 9, 12, 18, 21,

24, 27, 30, 33

3.07, 3.21, 4.11, 5.12, 6.11,

7.55, 7.79, 7.91, 8.02,

8.05, 8.05

Rosenow and

Marth (1987b)

1 CA 4 4 skimmed 10 0, 120, 240, 336, 432,

528, 696, 912, 1152, 1560

2.75, 2.78, 3.45, 4.28,

5.16, 6.22, 7.21, 7.63,

7.63, 7.49
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Ref. Fig. Strain i T (jC) Milk Nn t Yn(t)

Rosenow and

Marth (1987b)

1 CA 4 4 whole 10 0, 120, 240, 336, 432,

528, 696, 912, 1152, 1560

2.75, 2.83, 3.47, 4.28, 5.32,

6.36, 7.46, 7.6, 7.57, 7.44

2 V7 5 4 skimmed 10 0, 120, 240, 336, 432,

528, 624, 768, 1104, 1512

2.63, 2.98, 3.6, 4.34, 5.13,

5.95, 6.6, 7.16, 7.69, 7.79

2 V7 5 4 whole 10 0, 120, 240, 336, 432,

528, 624, 768, 1104, 1512

2.63, 2.79, 3.08, 3.76, 4.63,

5.43, 6.03, 6.82, 7.5, 7.66

9 CA 4 8 skimmed 10 0, 48, 96, 144, 192,

240, 288, 336, 408, 480

2.65, 2.63, 3.72, 4.84, 5.93,

6.89, 7.49, 7.67, 7.72, 7.75

9 CA 4 8 whole 10 0, 48, 96, 144, 192,

240, 288, 336, 408, 480

2.65, 2.66, 3.57, 4.69, 5.64,

6.37, 7.38, 7.59, 7.75, 7.75

10 V37CE 6 8 skimmed 10 0, 24, 48, 72, 120,

168, 216, 264, 336, 408

2.71, 2.76, 2.96, 3.45, 4.74,

5.52, 6.71, 7.2, 7.57, 7.82

10 V37CE 6 8 whole 10 0, 24, 48, 72, 120, 168,

216, 264, 336, 408

2.71, 2.76, 2.94, 3.43, 4.47,

5.35, 6.56, 7.2, 7.71, 8.08

11 Scott A 7 13 skimmed 8 0, 12, 24, 48, 72, 96,

120, 196

3.06, 3.2, 4.02, 5.46, 6.66,

7.57, 7.72, 8.06

11 Scott A 7 13 whole 8 0, 12, 24, 48, 72, 96,

120, 196

2.96, 3.2, 4.02, 5.46,

6.66, 7.66, 7.81, 8.1

12 CA 4 13 skimmed 9 0, 12, 24, 48, 72, 96,

120, 144, 196

2.77, 2.87, 3.26, 4.38,

5.56, 6.21, 6.9, 7.59, 7.9

12 CA 4 13 whole 9 0, 12, 24, 48, 72, 96,

120, 144, 196

2.77, 2.87, 3.33, 4.38,

5.44, 6.21, 7.08, 7.67, 7.95

14 V7 5 21 skimmed 9 0, 6, 12, 18, 24, 30, 38,

52, 78

2.85, 3.06, 4.13, 5.15,

6.1, 6.96, 7.76, 8.23, 8.34

14 V7 5 21 whole 9 0, 6, 12, 18, 24, 30, 38,

52, 78

2.85, 3.06, 4.13, 5.15,

6.1, 6.96, 7.76, 8.41, 8.49

16 V7 5 35 skimmed 10 0, 2, 4, 6, 8, 10, 12, 14,

24, 48

2.68, 2.77, 3.62, 4.53,

5.38, 6, 6.7, 7.18, 8.23, 8.44

16 V7 5 35 whole 10 0, 2, 4, 6, 8, 10, 12, 14,

24, 48

2.68, 2.77, 3.62, 4.53, 5.38,

6.06, 6.7, 7.2, 8.23, 8.44

Marshall and 1 Scott A 8 10 whole 6 0, 24, 48, 96, 144, 192 1.44, 1.61, 2.98, 4.4, 5.86, 7

Schmidt (1988) 2 Scott A 8 10 skimmed 6 0, 24, 48, 96, 144, 192 1.48, 1.66, 2.97, 4.39,

6.02, 7.18

3 Scott A 8 10 skimmed 6 0, 24, 48, 96, 144, 192 1.51, 1.67, 3.02, 4.41,

5.99, 7.08

Rosenow and

Marth (1987a)

1 CA 9 13 skimmed 9 0, 12, 24, 48, 72, 96,

120, 144, 192

2.6, 2.67, 3.24, 4.94,

6.47, 7.9, 8.27, 8.31, 8.24

2 V7 10 13 skimmed 9 0, 12, 24, 48, 72,

96, 120, 144, 192

2.86, 3.12, 4.03, 5.89,

7.32, 7.87, 8.1, 8.22, 8.24

3 CA 9 13 skimmed 9 0, 12, 24, 48, 72,

96, 120, 144, 192

2.7, 2.7, 3.05, 4.75, 6.15,

7.43, 7.94, 8.02, 7.97

4 V7 10 13 skimmed 9 0, 12, 24, 48, 72, 96, 120,

144, 192

2.82, 2.89, 3.59, 5.28,

6.75, 7.6, 7.91, 8.01, 7.96

Papageorgiou and

Marth (1989)

1 Scott A 11 4 skimmed 17 0, 120, 240, 360, 480,

600, 720, 840, 960, 1080,

1200, 1320, 1440, 1560,

1680, 1800, 2160

2.91, 2.82, 3.22, 3.35, 3.71,

5.75, 6.26, 6.6, 7.06, 7.14,

7.36, 7.39, 7.33, 7.54, 7.48,

7.54, 7.48

1 CA 12 4 skimmed 17 0, 120, 240, 360, 480, 600,

720, 840, 960, 1080, 1200,

1320, 1440, 1560, 1680,

1800, 2160

2.73, 2.79, 3.04, 4.19, 4.74,

5.35, 6.02, 6.66, 7.12,

7.18, 7.42, 7.58, 7.48, 7.54,

7.52, 7.58, 7.54

Table 1 (continued)

(continued on next page)
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Ref. Fig. Strain i T (jC) Milk Nn t Yn(t)

Papageorgiou and

Marth (1989)

2 Scott A 11 22 skimmed 19 0, 6, 12, 24, 30, 36, 48,

54, 60, 72, 78, 84, 96,

108, 120, 144, 168,

192, 240

3.15, 3.15, 3.31, 4.23, 4.68,

4.98, 5.76, 6.24, 6.41, 7.02,

7.13, 7.19, 7.35, 7.47, 7.5,

7.53, 7.55, 7.5, 7.72

2 CA 12 22 skimmed 19 0, 6, 12, 24, 30, 36, 48,

54, 60, 72, 78, 84, 96,

108, 120, 144, 168,

192, 240

2.97, 2.97, 3.09, 3.57, 3.92,

4.52, 5.4, 5.76, 6.58, 6.94,

7.22, 7.35, 7.53, 7.58, 7.64,

7.64, 7.69, 7.77, 7.92

Walker et al. (1990) 3 CRA433 13 8.7 – 10 0, 25, 47, 72, 144, 190,

219, 313, 481, 550

5.56, 5.48, 6.19, 7.56, 7.9,

7.96, 8.04, 8.06, 8.12, 8.07

3 CRA433 13 1.5 – 13 0, 22, 143, 313, 397,

487, 534, 575, 644, 712,

812, 894, 984

5.27, 5.19, 5.21, 6.41, 6.94,

7.29, 7.46, 7.44, 7.54, 7.54,

7.58, 7.58, 7.65

Schaack and

Marth (1988b)

1 V7 14 21 skimmed 6 0, 3, 6, 9, 12, 15 3.07, 3.02, 3.23, 3.88,

4.51, 5.0,

2 V7 14 30 skimmed 6 0, 3, 6, 9, 12, 15 3, 3.08, 4.17, 5.2,

6.16, 7.12

3 V7 14 21 skimmed 6 0, 3, 6, 9, 12, 15 3.07, 3.09, 3.4, 4.25,

4.63, 5.18

4 V7 14 30 skimmed 6 0, 3, 6, 9, 12, 15 3.08, 3.26, 4.3, 5.35,

6.31, 7.17

5 V7 14 21 skimmed 6 0, 3, 6, 9, 12, 15 3.03, 3.05, 3.17, 3.83,

4.51, 4.94

6 V7 14 30 skimmed 6 0, 3, 6, 9, 12, 15 3.03, 3.08, 4.16, 5.27,

6.23, 7.01

7 V7 14 21 skimmed 6 0, 3, 6, 9, 12, 15 3.07, 3.06, 3.4, 4.11,

4.68, 5.2

8 V7 14 30 skimmed 6 0, 3, 6, 9, 12, 15 3.08, 3.19, 4.37, 5.56,

6.44, 7.14

9 V7 14 21 skimmed 6 0, 3, 6, 9, 12, 15 3.12, 3.1, 3.36, 4.14,

4.72, 5.54

10 V7 14 30 skimmed 6 0, 3, 6, 9, 12, 15 3.08, 3.3, 4.44, 5.59,

6.38, 7.16

11 V7 14 21 skimmed 6 0, 3, 6, 9, 12, 15 2.99, 3.12, 3.36, 4.16,

4.53, 5.23

12 V7 14 30 skimmed 6 0, 3, 6, 9, 12, 15 3.03, 3.41, 4.39, 5.6,

6.32, 6.86

13 V7 14 21 skimmed 6 0, 3, 6, 9, 12, 15 3.12, 3.1, 3.59, 4.23,

4.91, 5.45

14 V7 14 30 skimmed 6 0, 3, 6, 9, 12, 15 3.09, 3.37, 4.59, 5.56,

6.57, 7.4

Schaack and

Marth (1988a)

1 V7 15 37 skimmed 6 0, 3, 6, 9, 12, 15 2.95, 3.41, 4.84, 5.93,

6.94, 7.36

2 V7 15 42 skimmed 6 0, 3, 6, 9, 12, 15 2.94, 3.26, 4.31, 5.3,

6.03, 6.72

3 V7 15 37 skimmed 6 0, 3, 6, 9, 12, 15 2.95, 3.45, 4.88, 6.07,

7.07, 7.5

4 V7 15 42 skimmed 6 0, 3, 6, 9, 12, 15 3.23, 3.46, 4.02, 4.43,

5.41, 6.15

5 V7 15 37 skimmed 6 0, 3, 6, 9, 12, 15 3.07, 3.5, 5.04, 6.11,

6.91, 7.41

6 V7 15 42 skimmed 6 0, 3, 6, 9, 12, 15 3.1, 3.46, 4.53, 5.26,

6.1, 6.64

Table 1 (continued)
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Ref. Fig. Strain i T (jC) Milk Nn t Yn(t)

Schaack and

Marth (1988a)

7 V7 15 37 skimmed 6 0, 3, 6, 9, 12, 15 2.73, 3.24, 4.87, 5.79,

6.75, 7.15

8 V7 15 42 skimmed 6 0, 3, 6, 9, 12, 15 2.82, 3.24, 4.51, 5.41,

6.26, 6.71

9 V7 15 37 skimmed 6 0, 3, 6, 9, 12, 15 2.92, 3.33, 4.85, 5.69,

6.66, 7.07

10 V7 15 42 skimmed 6 0, 3, 6, 9, 12, 15 2.97, 3.41, 4.68, 5.64,

6.68, 7.08

11 V7 15 37 skimmed 6 0, 3, 6, 9, 12, 15 3.06, 3.55, 4.93, 6.01,

6.88, 7.58

12 V7 15 42 skimmed 6 0, 3, 6, 9, 12, 15 3.07, 3.54, 4.56, 5.4,

6.07, 6.68

13 V7 15 37 skimmed 6 0, 3, 6, 9, 12, 15 3.08, 3.57, 4.9, 5.47,

6.99, 7.42

14 V7 15 42 skimmed 6 0, 3, 6, 9, 12, 15 3.08, 3.6, 4.27, 5.57,

5.74, 6.51,

15 V7 15 37 skimmed 6 0, 3, 6, 9, 12, 15 3.08, 3.89, 5.22, 6.51,

6.89, 7.15

16 V7 15 42 skimmed 6 0, 3, 6, 9, 12, 15 3.12, 3.77, 4.56, 5.41,

6, 6.38

17 V7 15 37 skimmed 6 0, 3, 6, 9, 12, 15 3.04, 3.64, 4.91, 6.1,

6.88, 7.43

18 V7 15 42 skimmed 6 0, 3, 6, 9, 12, 15 2.99, 3.64, 4.56, 5.41,

6.2, 6.82,

Pearson and

Marth (1990)

1 V7 16 30 skimmed 10 0, 3, 6, 9, 12, 16, 24,

28, 32, 40

3.12, 3.26, 3.57, 4.46,

5.33, 6.42, 7.9, 8.21,

8.41, 8.57

Brouillaud-Delattre

et al. (1997)

1 Scott A 17 4 partially

skimmed

31 0, 24, 48, 72, 96,

120, 144, 168, 192,

216, 240, 264, 288,

312, 336, 360, 384,

408, 456, 480, 504,

528, 552, 576, 624,

648, 672, 720, 792,

864, 984

3.18, 3.23, 3.15, 3.2,

3.2, 3.34,

3.51, 3.64, 3.99, 4.18,

4.4, 4.69, 4.85,

5.04, 5.26, 5.46, 5.7,

5.89, 6.15, 6.36, 6.49,

6.62, 6.88, 7, 7.34,

7.4, 7.38, 7.46, 7.56,

7.59, 7.52

1 Scott A 17 4 partially

skimmed

31 0, 24, 48, 72, 96, 120,

144, 168, 192, 216, 240,

264, 288, 312, 336, 360,

384, 408, 456, 480, 504,

528, 552, 576, 624, 648,

672, 720, 792, 864, 984

1.25, 1.17, 1.2, 1.31, 1.23,

1.37, 1.48, 1.67, 1.81, 2.04,

2.26, 2.4, 2.6, 2.74, 3, 3.18,

3.3, 3.43, 3.74, 3.87, 4.08,

4.2, 4.41, 4.57, 4.91, 5.04,

5.23, 5.58, 5.96, 6.41, 6.74

1 Scott A 17 4 partially

skimmed

25 0, 24, 48, 72, 96, 120,

144, 168, 216, 288, 336,

384, 456, 480, 504, 528,

552, 576, 624, 648, 672,

720, 792, 864, 984

0.08, 0.15, 0.15, 0.26, 0.3,

0.15, 0.38, 0.64, 1.16, 1.66,

2.04, 2.38, 2.93, 2.97, 3.23,

3.38, 3.63, 3.92, 4.34, 4.52,

4.82, 5.08, 5.69, 6.18, 6.63

1 Scott A 17 4 partially

skimmed

22 0, 24, 48, 72, 96, 120,

168, 216, 288, 336, 384,

456, 504, 552, 576, 624,

648, 672, 720, 792,

864, 984

� 0.7, � 0.4, � 0.7, � 0.7,

� 0.7, � 0.7, � 0.4, 0.2, 0.82,

1.27, 1.56, 2.09, 2.5, 3, 3.11,

3.78, 3.9, 4.15, 4.63, 5.18,

5.81, 5.87

Table 1 (continued)

(continued on next page)

R. Pouillot et al. / International Journal of Food Microbiology 81 (2003) 87–104 93



Ref. Fig. Strain i T (jC) Milk Nn t Yn(t)

Donnelly and

Briggs (1986)

1a F5069 18 37 whole 8 0, 2, 4, 6, 8, 10, 12, 24 0.59, 0.71, 1.07, 2.15, 2.73,

3.86, 4.71, 8.09

1a F5069 18 22 whole 5 0, 4, 8, 12, 24 0.95, 1.18, 1.84, 2.76, 4.97

1a F5069 18 10 whole 5 0, 24, 48, 72, 96 0.87, 3.98, 6.4, 7.58, 7.89

1a F5069 18 4 whole 5 0, 24, 48, 72, 96 0.65, 0.71, 1.02, 1.51, 2.1

1b F5069 18 37 skimmed 8 0, 2, 4, 6, 8, 10, 12, 24 1.07, 1.35, 2.17, 3.18, 3.98,

4.85, 5.3, 7.93

1b F5069 18 22 skimmed 5 0, 4, 8, 12, 24 1.13, 1.23, 2.24, 3.04, 5.49

1b F5069 18 10 skimmed 5 0, 24, 48, 72, 96 0.93, 1.42, 2.81, 4.76, 6.47

1b F5069 18 4 skimmed 5 0, 24, 48, 72, 96 0.93, 1.27, 1.53, 2.01, 2.52

1c F5069 18 37 partially

skimmed

8 0, 2, 4, 6, 8, 10, 12, 24 0.71, 1.21, 1.63, 2.45, 3.13,

4.31, 5.16, 8.43

1c F5069 18 22 partially

skimmed

5 0, 4, 8, 12, 24 1.51, 1.61, 2.27, 2.87, 5.04

1c F5069 18 10 partially

skimmed

5 0, 24, 48, 72, 96 1.3, 1.79, 2.57, 3.56, 4.81

1c F5069 18 4 partially

skimmed

4 0, 24, 72, 96 0.85, 1.37, 1.7, 1.87

2a F19113 19 37 whole 7 0, 2, 4, 6, 8, 10, 24 0.25, 0.67, 0.77, 0.85, 1.55,

2.06, 5.68

2a F19113 19 22 whole 3 0, 12, 24 1.07, 1.22, 3.49

2a F19113 19 10 whole 5 0, 24, 48, 72, 96 0.24, 1.28, 4.11, 5.87, 6.56

2a F19113 19 4 whole 5 0, 24, 48, 72, 96 0.14, 0.21, 0.26, 1.15, 2.06

2b F19113 19 37 skimmed 8 0, 2, 4, 6, 8, 10, 12, 24 0.45, 0.75, 1.26, 1.55, 2.22,

2.59, 2.78, 3.89

2b F19113 19 22 skimmed 4 0, 4, 12, 24 0.93, 0.96, 2.29, 3.07

2b F19113 19 10 skimmed 5 0, 24, 48, 72, 96 0.37, 0.75, 1.97, 2.62, 4.43

2b F19113 19 4 skimmed 5 0, 24, 48, 72, 96 0.51, 0.91, 1.1, 1.26, 1.5

2c F19113 19 37 partially

skimmed

7 0, 4, 6, 8, 10, 12, 24 0.61, 0.67, 1.12, 1.26,

2.34, 3.28, 5.39

2c F19113 19 22 partially

skimmed

4 0, 4, 12, 24 1.01, 1.26, 1.55, 3.02

2c F19113 19 10 partially

skimmed

5 0, 24, 48, 72, 96 1.28, 1.36, 1.63, 2.32, 2.96

2c F19113 19 4 partially

skimmed

5 0, 24, 48, 72, 96 1.26, 1.31, 1.5, 1.89, 2.48

3 F199115 20 37 whole 8 0, 2, 4, 6, 8, 10, 12, 24 1, 1.11, 1.9, 2.68, 3.41,

3.98, 4.75, 7.5

3 F199115 20 22 whole 5 0, 4, 8, 12, 24 1.19, 1.49, 1.95, 2.59, 4.29

3 F199115 20 10 whole 5 0, 24, 48, 72, 96 0.61, 3.73, 6.07, 7.64, 8.08

3 F199115 20 4 whole 5 0, 24, 48, 72, 96 0.85, 0.9, 1.11, 1.73, 1.95

4a F19111 21 37 whole 8 0, 2, 4, 6, 8, 10, 12, 24 0.76, 0.98, 1.43, 2.42,

2.95, 3.58, 4.33, 7.28

4a F19111 21 22 whole 5 0, 4, 8, 12, 24 1.21, 1.32, 1.82, 2.73, 4.75

4a F19111 21 10 whole 5 0, 24, 48, 72, 96 1.04, 2.01, 3.08, 3.66, 5.88

4a F19111 21 4 whole 5 0, 24, 48, 72, 96 0.89, 1.23, 1.41, 1.63, 2.03

4b F5027 22 37 whole 7 0, 4, 6, 8, 10, 12, 24 1.01, 1.48, 2.17, 3.36, 3.92,

4.55, 7.98

4b F5027 22 22 whole 5 0, 4, 8, 12, 24 1.23, 1.59, 2.17, 2.81, 4.94

4b F5027 22 10 whole 5 0, 24, 48, 72, 96 1.13, 1.91, 3.4, 4.58, 6.15

4b F5027 22 4 whole 5 0, 24, 48, 72, 96 1.08, 1.17, 1.47, 1.87, 2.23

Table 1 (continued)
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where K is a variable depending on the strain and

the physiological state of the inoculum and eSM2

the model error. This relationship is based on the

assumption that the lag time k(T) is proportional

to the generation time log(2)/lmax(T) whatever

the value of T (Zwietering et al., 1994; Rosso,

1995; Delignette-Muller, 1998) if model error is

neglected. The logarithm transformation for K is

used to stabilise the variance (Delignette-Muller,

1998).

2.2.2. Bayesian model

n (n = 1, . . ., 124) will denote the index of the

growth curves of L. monocytogenes used. Each curve

is obtained from Nn measurements of the growth of a

bacterial strain in (i= 1,. . ., 22) at a constant temper-

ature Tn. The data consist of a set of observations

denoted by Yn(t) [unit: log(cfu ml� 1)], the logarithm

of the bacterial concentration at time t (unit: h) of strain

in studied at temperature Tn (unit: jC) obtained from

the growth curve n.

The model uses the following parameters:

– the logarithm of the maximal achievable concen-

tration in the culture broth ymax, which is assumed

to be constant for a given culture medium (one

parameter);

– the logarithm of the initial bacterial concentration,

which is assumed to be defined at the growth curve

level (124 parameters). It will be denoted yn,0. The

order of magnitude of yn,0 is defined by the

experimenter;

– the optimal growth rate, which is assumed to be

strain and medium dependent (Rosso, 1995)

(22	 1 parameters) and will be denoted lopt,i;
– the cardinal values, which are assumed to be strain

dependent (22 parameters per cardinal value) and

will be denoted Tmin,i, Topt,i and Tmax,i for the

Fig. 1. Directed acyclic graph of the model. All model quantities are presented as nodes. Data ( Yn,t and Yn,0) are denoted by rectangles;

covariates (tn,t and Tn) are denoted by double-rectangles and parameters are denoted by ellipses. Arrows run between nodes from their direct

influence (‘parents’) to the ‘descendants,’ indicating the conditional independence assumptions of the model: given its parent nodes, each node

is independent of all other nodes in the graph except its ‘descendants.’ Solid arrows indicate stochastic dependences while dashed arrows

indicate logical functions. Stochastic and logical links are fully described in Table 2.
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minimal, optimal and maximal growth temperatures

of strain i, respectively;

– the K value in Eq. (5), which is assumed to be

strain and physiological stage dependent. Assum-

ing an identical physiological stage for a ‘strain’

as defined previously, K is assumed to be strain

dependent only (22 parameters) and will be

denoted Ki;

– the standard deviation of the error of the primary

model (Eq. (1)) denoted rPM (one parameter);

– the standard deviation of the error of the secondary

model for lmax (Eq. (3)) denoted rSM1 (one

parameter);

– the standard deviation of the error of the

secondary model for k (Eq. (5)) denoted rSM2

(one parameter).

Moreover, the strain parameters lopt,i, Tmin,i, Topt,i,

Tmax,i and Ki will be assumed to follow parent distri-

butions specified by hyperparameters. Mlopt
, MTmin

,

MTopt
, MTmax

and MK will denote the expected values

of the corresponding distributions, Slopt
, STmin

, STopt,

STmax
and SK the standard deviations of the correspond-

ing distributions. As an example, lopt,i is linked to

Mlopt
and Slopt

in this Bayesian model according to

N(Mlopt
, Slopt

), N(a, b) being a normal distribution with

expected value a and standard deviation b.

The directed acyclic graph (Whitaker, 1990) of this

model may be represented as in Fig. 1. By closely

observing this figure, it is possible to notice all the

conditional independences used in the model easily.

As an example, given MTopt
and STopt, Topt,i is inde-

pendent of all the other nodes, except SM1n. Distri-

butions and links between parameters, covariates and

variates are expressed in Table 2. Note that parameters

lopt,i and Ki are constrained to be positive.

2.3. Prior distributions

We chose fairly uninformative prior distributions.

Expected values for the prior distribution of Mlopt
,

MTmin
, MTopt

, MTmax
and MK were the estimates

obtained by Augustin and Carlier (2000) from a

literature review of all published growth curves of

L. monocytogenes using standard nonlinear regres-

sion. A prior standard deviation of 4 was chosen for

MTmin
, a prior standard deviation of

ffiffiffiffiffi
10

p
was chosen

for MTopt
, MTmax

and MK and a prior standard devia-

tion of 1 was chosen for Mlopt
. These standard

deviations allow the prior distributions to vary

within a wide range of values. For example, the

95% credible interval, defined as the interval

between the 2.5th and the 97.5th percentiles of a

given distribution, is [� 10.54 jC, 5.14 jC] for

MTmin
. Other prior credible intervals are given in

Table 3. Note that in Bayesian theory, for posterior

and prior distributions, we deal with ‘credible inter-

vals’ which is different from the frequentist (i.e.

non-Bayesian) concept of ‘confidence intervals’

(Press, 1998).

The prior distributions of the standard deviation

of the model errors, i.e. rPM, rSM1 and rSM2, were

chosen according to Spiegelhalter et al. (1996). For

precision parameters (the reciprocal of the square of

the standard deviation, i.e. rPM
� 2, rSM1

� 2 and

rSM2
� 2), the authors recommend a G(10 � 3, 103)

prior distribution, where G(a, b) is the gamma

distribution of shape parameter a and scale param-

eter b (as parameterised in R software, n The R

Core Team, 2001). This very particular distribution

reasonably favours high values for the standard

deviation (Spiegelhalter et al., 1996).

Slopt
, STmin

, STopt, STmax
and SK are the standard

deviations of random effects in this hierarchical

model. When the likelihood function is flat, which

Table 2

Description of the links indicated in Fig. 1

Node Type Definition

Yn,t stochastic N(PMn,t, rPM)
PMn,t logical Eq. (2)a

ymax stochastic N(8.5, rPM)

yn,0 stochastic N( Yn,0, rPM)

lmax,n stochastic (lmax,n)
1/2 fNð

ffiffiffiffiffiffiffiffiffiffiffiffi
SM1n

p
; rSM1Þ

SM1n logical Eq. (4)b

kn logical Kn/lmax,n

Kn stochastic log(Kn)fN(log(Ki), rSM2)

lopt,i stochastic NT(MAopt, Slopt
)I(0, l)c

Tmin,i stochastic N(MTmin
, STmin

)

Topt,i stochastic N(MTopt
, STopt)

Tmax,i stochastic N(MTmax
, STmax

)

Ki stochastic N(MK, SK)I(0, l)c

a The node is linked according to the primary model (Eq. (2)).
b The node is linked according to the secondary model (Eq.

(4)).
c XfN(a, b)I(0, l) denote a quantity X from a normal

distribution with expected value a and standard deviation b, where

[0; l] represents interval censoring (see Spiegelhalter et al., 1996,

p.16, for details).
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is the case in such predictive microbiology models,

some external judgement of plausible values for

these dispersion parameters is unavoidable (Spiegel-

halter et al., 1996). The purpose is then to use

expert knowledge to specify a reasonable prior

distribution for these parameters. We adapted a

method proposed by Smith et al. (1995) (see

Appendix A). Prior distributions finally used are

provided Table 3.

2.4. Bayesian inference

The direct calculation of full conditional poste-

rior distributions is most often impossible, espe-

cially for models including many parameters.

Markov-Chain Monte-Carlo (MCMC) techniques

are powerful in such cases: instead of calculating

the exact posterior density, these computer-intensive

techniques generate chains of simulated values for

parameters, with the sampling algorithm converging

to the posterior distributions of interest. Gibbs

sampling (Gelfand and Smith, 1990), derivative-free

adaptative rejection sampling (Gilks, 1992), slice

sampling or the Metropolis–Hasting algorithm may

be used, alone or combined, for such purposes

(Gilks et al., 1996). More details on MCMC

techniques can be found in Gilks et al. (1996).

Here, Bayesian inferences were performed using

WinBUGS software (n MRC Biostatistics Unit,

Table 3

Prior distributions used for hyperparameters and parameter ymax

Parameter Distribution P0.025
a Median P0.975

b

MTmin
N(� 2.7, 4) � 10.5 � 2.70 5.14

MTopt
N(37.0, 3.16) 29.2 37.0 44.9

MTmax
N(45.5, 3.16) 37.7 45.5 53.3

Mlopt
N(0.70, 1) � 1.26 0.70 2.66

MK N(3.09, 3.16) � 4.75 3.09 10.9

rPM rPM
�2fG(0.001, 1000) 13,270 1.4	 10149 l

rSM1 rSM1
�2fG(0.001, 1000) 13,270 1.4	 10149 l

rSM2 rSM2
�2fG(0.001, 1000) 13,270 1.4	 10149 l

STmin
STmin

�2fG(1.68, 2.82) 0.266 0.510 1.53

STopt STopt
�2fG(1.68, 2.82) 0.266 0.510 1.53

STmax
STmax

�2fG(1.68, 2.82) 0.266 0.510 1.53

Slopt
Slopt

�2fG(3.26, 14.6) 0.0948 0.153 0.306

SK SK
�2fG(3.26, 1.31) 0.316 0.510 1.02

ymax N(8.50, rPM) 6.54c 8.50 10.5c

a 2.5th percentile.
b 97.5th percentile.
c This value is dependent on rPM; its expected value is

presented using rPM = 1.

Table 4

Descriptive statistics of empirical posterior distributions of hyperparameters and parameter ymax and corresponding adjusted distributions

Parameter Mean S.D. P0.025
a Median P0.975

b Adjusted distributionc

MTmin
� 2.47 0.69 � 3.87 � 2.45 � 1.19 N(� 2.47, 0.690)

MTopt
37.3 0.56 36.3 37.3 38.5 LND(2.19, 0.0621, 28.3)

MTmax
45.0 0.95 43.3 44.9 47.1 LND(2.08, 0.117, 36.9)

Mlopt
0.69 0.05 0.59 0.69 0.79 GD(601, 0.00199, � 0.508)

MK 1.36 0.14 1.09 1.36 1.64 LND(0.981, 0.0534, � 1.32)

rPM 0.23 0.01 0.22 0.23 0.24 LN(� 1.46, 0.0254)

rSM1 0.04 0.00 0.03 0.04 0.05 G(88.4, 0.000463)

rSM2 0.44 0.07 0.32 0.44 0.58 G(41.2, 0.0107)

STmin
1.26 0.61 0.35 1.21 2.59 W(2.21, 1.43)

STopt 0.56 0.25 0.27 0.50 1.21 LND(� 1.02, 0.538, 0.140)

STmax
0.59 0.32 0.26 0.50 1.46 LND(� 1.05, 0.645, 0.164)

Slopt
0.18 0.03 0.13 0.18 0.25 LND(� 1.73, 0.160, � 9.06	 10� 4)

SK 0.40 0.08 0.27 0.39 0.57 LND(� 1.32, 0.269, 0.112)

ymax 7.92 0.02 7.89 7.92 7.96 BD(8.89, 9.47, 7.84, 8.01)

a 2.5th percentile.
b 97.5th percentile.
c N(a, b), normal distribution with expected value a and standard deviation b; Xf LND(a, b, c) if ln(X� c)fN(a, b)1, XfGD(a, b, c) if

(X� c)fG(a, b) where G(a, b) is the gamma distribution with shape parameter a and scale parameter b; W(a, b), Weibull distribution with

shape parameter a and scape parameter b; XfBD(a, b, c, d) if (X� c)/(d� c)fB(a, b) where B(a, b) is the beta distribution with shape

parameters a and b. Parameterisation of distributions are those of R software (n The R Core Team, 2001).
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Spiegelhalter et al., 2000).1 After an adaptation

phase (also called ‘burn-in phase’, Gilks et al.,

1996), of 5	 104 iterations, the convergence of

the MCMC algorithm was checked by visually

analysing three independent MCMC chains using

three different initial values for parameters S and r.
Gelman and Rubin convergence statistics, as modi-

fied by Brooks and Gelman (1998), were also

calculated and examined. Inferences were made on

the pool of 2	 104 iterations following the burn-in

phase for the three chains, i.e. 6	 104 iterations.

2.5. Parameterisation of the empirical posterior

distributions

The posterior distributions obtained from MCMC

techniques are not parametric. In order to provide

practical parametric distributions for risk assessment

purposes, standard parametric distributions were fit-

ted to empirical posterior distributions for hyper-

parameters Mlopt
, MTmin

, MTopt
, MTmax

, MK, Slopt
, STmin

,

STopt, STmax
and SK and parameter ymax using max-

imum likelihood estimates. The distribution that

minimised the Anderson and Darling statistic

(1952) was finally chosen (for a more detailed

discussion on goodness-of-fit statistics in distribution

fitting, see, e.g. Vose, 2000). Further details on

1 The WinBUGS code written for this study is available on

request from the first author.

Fig. 2. Empirical posterior densities of parameters MTmin
(a), STmin

(b), Mlopt
(c), Slopt

(d) and corresponding adjusted distributions.
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standard parametric distributions tested can be found

in Pouillot et al. (2001).

3. Results

Descriptive statistics of empirical posterior distri-

butions are summarised in Table 4. Note that the

convergence of MCMC chains appeared to be very

slow since about 4	 104 iterations were needed.

Posterior distributions for MK, MTmin
, MTopt

, MTmax
, Mlopt

and ymax are reasonably symmetric, while those for

rPM, rSM1, rSM2, SK, STmin
, STopt, STmax

and Slopt
are

slightly skewed to the right. Fig. 2 shows the empiri-

cal posterior densities for four example parameters:

MTmin
, STmin

, Mlopt
and Slopt

.

Posterior means of Tmin, Topt and Tmax (� 2.5, 37.3

and 45.0 jC, respectively) are relatively close to their

prior expected values (� 2.7, 37.0 and 45.5 jC,
respectively), while their posterior standard deviation

values (0.69, 0.56 and 0.95 jC) are far lower than

their prior standard deviation values (4.0, 3.2 and 3.2

jC). Note that prior standard deviations were chosen

so as to be high enough to give relatively uninforma-

tive priors.

The posterior mean of lopt (0.69 h� 1) is close to

its prior expected value (0.70 h� 1), but inferences

have reduced the standard deviation of this estimate

from 1 h� 1 (uninformative prior) to an estimated

value of 0.05 h� 1 (posterior). The K posterior mean

(1.36) is far lower than its prior expected value (3.09);

the posterior 95% credible interval for this parameter

does not contain the prior expected value. This could

reflect incorrect specification of the prior distribution

for this parameter.

Variability is quantified by precision parameters

STmin
, STopt, STmax

, Slopt
and SK. The mean of the posterior

distribution of STmin
(1.26 jC) remains high compared

to those of STopt (0.56 jC) and STmax
(0.59 jC),

suggesting that the variability of Tmin is relatively

high. Standard deviation of lopt,i around Mlopt
was

estimated to be 0.18 h� 1; standard deviation of Ki

around MK was estimated to be 0.40. Note that the

estimated variability around the mean values was

comparable to those expected by the expert, except

for the median variability around Tmin for which the

estimate is greater (model estimate: 1.21 vs. expert

estimate: 0.51), and the median variability around K

for which the estimate is smaller (model estimate:

0.39 vs. expert estimate: 0.51).

Rank correlation coefficients between paired

parameters are lower than 0.2, except for the pair

MTmin
�MTopt

(� 0.39) and the pair MTmin
�MTmax

(0.36), suggesting a relatively weak dependence

between model parameters.

Table 4 provides the parametric distributions fitted

to the empirical distributions. All fitted distributions

were very close to the empirical distributions, except

for STmin
, for which the posterior distribution was

slightly bimodal (see Fig. 2b).

4. Discussion

On the basis of this example, it was highlighted that

bacterial growth parameters may be estimated using a

complete predictive microbiology model by means of a

Bayesian approach. We used data from the literature. In

most cases, data were reproduced only by means of

diagrams. This approach certainly adds measurement

errors, which should be estimated in a specific study.

Moreover, data were collected from published growth

curves obtained in various laboratories. Using our

definition of the ‘bacterial strain,’ the laboratory,

physiological and strain effects are confounded in this

study. Due to the data collection (partial information on

the exact physiological state of the strain, on the exact

nature of the isolate used, on the counting method, . . .),
we are able to measure specifically neither interlabor-

atory variability nor physiological state effects. Part of

the uncertainty concerning model parameters and/or

the model errors might be due to these superimposed

error. Data for estimating strain variability should be

obtained by observing a large number of strains,

representative of the overall variability in the criteria

under study for the genus or species considered, using

an optimal experimental design which makes it possi-

ble to reduce and estimate any growth variability other

than the strain effect. In the absence of such exper-

imental data, and despite the fact that only a few

different L. monocytogenes strains have been studied

in the literature, this kind of meta-analysis is a right

way to obtain a better representation of L. monocyto-

genes variability.

The example illustrated in this study uses predic-

tive models from the literature without any a priori
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specific knowledge on their ability to fit observed

data. The validation of the models used are discussed

elsewhere (Rosso et al., 1993, 1995; Augustin and

Carlier, 2000). Moreover, the paradigm of the rela-

tionship k(T)	 lmax(T) =K, constant for a given

strain, has been largely revisited (Buchanan and

Klawitter, 1991; Membré et al., 1999; Augustin and

Carlier, 2000) and a more complete model should be

included for k(T) (McKellar et al., 1997; Bréand et al.,

1999; Augustin et al., 2000). Indeed, any other

adequate model could be implemented in such a

Bayesian procedure. Nevertheless, using the secon-

dary cardinal model of Rosso et al. (1993), the bio-

logical interpretation of all model parameters made it

possible to specify prior distribution from expert

knowledge easily, which is of great interest in such

a Bayesian procedure.

Our experience using this model showed that its

fairly flat likelihood function does not allow the use of

totally uninformative distribution for precision param-

eters, S, as previously described (Spiegelhalter et al.,

1996). Information was thus injected into the model

by specifying prior information from expert knowl-

edge on between-strain variability. Other prior distri-

butions were fairly uninformative since prior credible

intervals covered a very wide range of values. While

no systematic sensitivity analysis was implemented to

evaluate the influence of these prior distributions,

various assays have been implemented using various

prior distributions (results not shown): while conver-

gence was obtained in more or less iterations, all led

to similar estimates suggesting the model was rela-

tively robust.

In almost all referenced papers aimed at fitting

predictive microbiology models to observed data, a

two-stage evaluation is performed: (i) the first stage is

to fit a primary growth model to observed experimen-

tal data, which derives estimated parameters (gener-

ally lmax, k, y0 and ymax); (ii) the second stage is to

independently fit a secondary growth model to these

estimated parameters (generally lmax and k) as a

function of controlling factors (temperature, pH, water

activity, etc.). These two steps are usually not linked

(e.g. Wijtzes et al., 1993; Rosso et al., 1995; George et

al., 1996). The consequence is that first stage estimate

uncertainty is generally not taken into account: as

examples, a lack of fit of the primary model to a given

set of data is not considered and parameters estimated

from a lot of observed values are generally given the

same weight in the second step as parameters esti-

mated from few observed points. This strategy is

obviously an approximation and could lead to poor

estimates. In this paper, we demonstrate the feasibility

of fitting a secondary growth model to observed data

in a single step. A few frequentist ‘one-step proce-

dures’ have been developed in recent years. Bréand et

al. (1999) showed an improvement in parameter

estimator precision in a single model describing the

relationship between regrowth lag time and mild

temperature increase for L. monocytogenes. Bernaerts

et al. (2000) illustrate this kind of direct approach in a

dynamic temperature profile for Escherichia coli K12.

In our approach, this overall fitting can be performed

relatively easily since Bayesian models are flexible.

In our example, the agreement between the results

and conventional two-stage frequentist models can be

checked directly from the deviation between the

means of the prior and posterior distributions, since

prior distribution means were chosen according to

standard two-stage nonlinear regression model results

(Augustin and Carlier, 2000) and prior standard devi-

ations were high. Taken as a whole, the results are

highly concordant with those obtained by standard

nonlinear regression models, except for parameter K

whose Bayesian estimate is far lower than previous

estimates. A comparable procedure using the same

data should be provided to confirm this piece of

evidence. The high interstrains variability for param-

eter Tmin and parameter K (Augustin and Carlier,

2000) is confirmed. This might be due to the influence

of the physiological state of the cell, keeping in mind

that strain and physiological state are confounded

factors in our study.

In our model, the secondary model parameters are

defined at the strain level. No within-strain variability

is considered for parameters lopt,i, Tmin,i, Topt,i, Tmax,i

and Ki. Modelled distributions for these parameters

reflects uncertainty. In a different approach explicitly

modelling within strain variability, a specific study

design including appropriate within strain repetitions

should be used. The method developed in this paper

was designed to separately evaluate growth inter-

strains variability and uncertainty: the pivot (here we

took the expected value) of the posterior distribution

of dispersion parameters (estimated by the mean of

the posterior distribution of Slopt
, STmin

, STopt, STmax
and
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SK) may be interpreted as being the expected value of

the variability in each parameter around the respective

modelled hyperparameters M. The posterior density

for hyperparameters Mlopt
, MTmin

, MTopt
, MTmax

and MK

can be interpreted as being the uncertainty concerning

the expected growth parameters for all strains. The

overall posterior distribution of dispersion parameters

may be interpreted as being the uncertainty concern-

ing the variability in each parameter around the

modelled hyperparameters. Note that, as for nearly

all modelling, the uncertainty is nevertheless eval-

uated conditionally on the assumed model. The

‘model uncertainty’ (Vose, 2000) is not dealt in this

study.

Assuming model parameter independences, mar-

ginal posterior distributions or proposed adjusted

marginal distributions can be incorporated in micro-

bial risk assessment models. The modelling of varia-

bility amongst strains would be direct. For example,

for risk assessment purposes, a NðM
w
Tmin

; S
w
Tmin

Þ , i.e. a
N(� 2.47, 1.26), could be used to simulate Tmin

variability, assuming that pivots for Tmin distribution

may be estimated from the mean of their posterior

distributions. In order to model parameter variability

and uncertainty, a two-step simulation procedure

should be used iteratively: in the first step, an MT
*
min

value and an ST*min
value could be randomly selected

from their respective empirical or fitted posterior

distributions; in a second step, a Tmin, i value could

be simulated using Tmin, ifN(MTmin
, ST*min

). This

separation of variability and uncertainty can be used

straightforwardly in a ‘Monte-Carlo’ second-order

modelling (Nauta and Dufrenne, 1999; Vose, 2000)

(Fig. 3).

Fig. 3. (a) Modelling of Tmin,i parameter variability amongst strains expressed by the cumulative density function of N(� 2.47, 1.26). (b)

Modelling of Tmin,i parameter variability and uncertainty using a second-order simulation: 100 MT
*
min

values are randomly selected from a

N(� 2.47, 0.690) distribution and 100 ST*min
values are randomly selected from a W(2.21, 1.43) distribution. The 100 respective cumulative

density function Tmin,ifN(MT
*
min
, ST*min

) are presented.
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To our best knowledge, the use of Bayesian sta-

tistics for parameter estimation is original in the

context of predictive microbiology model. The use

of such a method has other advantages, particularly

when the estimated parameters ought to be estimated

for risk assessment purposes. Firstly, the concept of

parameter variability and uncertainty seems natural in

the Bayesian approach to parameters as random var-

iables. Secondly, the Bayesian concept makes it

possible to use various sources of information avail-

able to quantify the state of knowledge: expert infor-

mation or previous data may be used to define prior

distributions, which are then updated with new evi-

dence or new data. This forms an elegant way of

combining various sources of information or incorpo-

rating new data in a risk assessment study. As an

example, the posterior distributions we obtained could

be used as prior distributions for a future study.

Thirdly, Bayesian statistics make it possible to make

inferences on hyperparameters relatively easily, while

this would be more difficult in conventional frequent-

ist statistics. Lastly, valid computer programmes for

Bayesian inferences have now been implemented and

validated.

The Bayesian approach is a valuable tool for

evaluating growth parameters using predictive micro-

biology models for risk assessment purposes. Com-

plementary studies, on a validated set of data, should

be implemented in order to confirm the benefits of

using such procedures.
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Appendix A. Specification of the prior distribution

of standard deviation parameters from external

judgement (adapted from Smith et al., 1995)

Let us assume that

XfNðl; rÞ; ðA:1Þ
where X is a model parameter and l is the expected

value. r is the standard deviation parameter for which

we wish to establish the prior density: it represents the

natural variability in X amongst the observations.

Smith et al. (1995) recommend the use of a Gamma

distribution to model the precision parameter, defined

as the reciprocal of the square of the standard devia-

tion. We assume then that the distribution of r� 2 is in

the following form:

r�2fGða; bÞ: ðA:2Þ

The purpose is to specify a and b from expert

knowledge on variability in X. The expert is asked to

supply the following two centred intervals: (i) [l� l1;

l + l1], his estimation of the ‘‘most probable’’ plau-

sible order of magnitude of X amongst the observa-

tions; (ii) [l� l2; l + l2], his estimation of the

‘‘extreme’’ order of magnitude of X, meaning that

he would be rather surprised to find greater variability

in X between observations.

We interpret these estimations as being a prior

belief that 95% of subjects have X values within a

range of [l� l1; l + l1] when r1 is a plausible value of

r, and that 95% of subjects have X values within a

range of [l� l2; l + l2] when r2 is an extreme value of

r.
According to relationship (A.1), we have r1 = l1/

1.96 and r2 = l2/1.96, since 1.96 is the 97.5th percen-

tile of the standard normal distribution. We then

interpret r1, the plausible value of r, as the 50th

percentile of the distribution of r and r2, the extreme

value of r, as the 2.5th percentile of the distribution of

r. Using these two estimates, we specify the param-

eters a and b using numerical inversion.

Application: French Food Safety Agency (AFSSA)

experts on predictive microbiology gave half-ranges

[l1, l2] of [1, 3] for Tmin, Topt and Tmax, producing the

estimates r1 = 0.51 and r2 = 1.53. The proposed half-

range for lopt was [0.3, 0.6] (r1 = 0.15 and r2 = 0.31),

the one for K was [1, 2] (r1 = 0.51 and r2 = 1.02). This
leads to the prior distributions specified in Table 3.
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