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Abstract

Optimal experimental design for parameter estimation (OED/PE) is a promising method to improve parameter estimation

accuracy and minimise experimental effort in the field of predictive microbiology. In this paper, the OED/PE methodology was

applied on two practical examples: the growth of Bacillus cereus and Enterobacter cloacae in liquid whole egg product. Both

strains were recovered from samples of a commercial product. The goal of the modelling exercise was to quantify the influence

of temperature on bacterial growth. The Baranyi-model for bacterial growth combined with the Ratkowsky square root model to

describe temperature dependence was used. Using this model, a temperature step profile was calculated based on the optimal D-

criterion. The model was then fitted against the experimental bacterial growth curve measured under the dynamic temperature

conditions. This process was repeated until the parameters could be estimated with sufficient accuracy, apparent by the model

prediction errors. For B. cereus, prior information could be extracted from the literature, allowing calculating a dynamic

temperature profile directly. Two-step profiles were sufficient to obtain a good estimation for the model parameters. No prior

information could be found for E. cloacae. Therefore, a limited series of static experiments had to be conducted to obtain usable

prior model parameters estimates. Only one dynamic experiment was then needed to achieve a good estimation.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Predictive modelling of bacterial growth in foods

remains an important research topic among food

microbiologists. A good predictive model should
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allow predicting bacterial growth in a certain food

matrix as function of environmental conditions,

enabling application in shelf-life estimation and

microbiological risk assessment (Buchanan and Whit-

ing, 1996). Predictive microbiological models can be

subdivided in two categories: primary and secondary

models (Whiting, 1995). Primary models describe the

growth of bacteria under static conditions; the

secondary models describe the primary model param-
obiology xx (2004) xxx–xxx
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eter-dependence on environmental factors. This sub-

division reflects the traditional way of calibrating

predictive models: a series of growth or inactivation

curves is measured; the parameters of the primary

model are fitted to each curve, after which the

secondary model parameters can be estimated. This

represents a substantial experimental effort.

The reliability of the model parameters determines

to a large extent the value of model-based predic-

tions. It requires considerable effort to collect the

necessary data to allow for good parameter estima-

tion (McMeekin et al., 1993). Optimal experimental

design (OED) can help to optimise available

resources. Two types of OED can be distinguished:

OED for model discrimination and OED for param-

eter estimation (OED/PE). The former is used when

different competing models are available and the aim

is to find the best one for the task at hand. Despite

the fact that numerous types of predictive models are

available, primary as well as secondary, this type of

OED has not been applied in the field of predictive

microbiology to the best of our knowledge. OED/PE

presumes a fixed model structure; the aim is now to

estimate the model parameters as accurately as

possible by manipulating the available experimental

degrees of freedom. Note that these methodologies

are quite common in fields like chemical, biochem-

ical and environmental engineering (Froment and

Bischoff, 1990; Vanrolleghem, 1994).

Pioneering work on OED/PE in the field of

predictive microbiology has been done by Van Impe

and co-workers (Versyck et al., 1999; Bernaerts et al.,

2000; Bernaerts et al., 2002; Bernaerts et al., 2003).

They have published results on OED/PE for estimat-

ing model parameters of growth as well as inactiva-

tion temperature models and have demonstrated

convincingly that OED/PE can be used successfully

to improve the estimation properties and optimise the

experimental efforts by directly estimating the secon-

dary parameters from a carefully designed dynamic

experiment. However, the methodology appears not to

be applied in practice in recent predictive modelling

exercises. The aim of this paper is to utilize the OED/

PE techniques to two real-life examples in order to

assess their practical usefulness. Therefore, an OED/

PE exercise was carried out for two bacteria isolated

from commercial liquid whole egg products, Bacillus

cereus and Enterobacter cloacae.
2. Materials and methods

2.1. Inoculation and bacterial count

Bacterial growth curves for B. cereus and E.

cloacae were measured in sterilised liquid whole egg

from the same producer. Sterilisation of egg products

is not possible by heat processes due to the texture

changes of the product; therefore, the sterilisation

was done by radiation with gamma beams from a

cobalt-60 source with a radiation intensity of 4 kGy

at Ion Beam Applications (Fleurus, Belgium). It was

verified that the radiated product was indeed sterile.

This was done by submitting not-inoculated product

to the same conditions as inoculated product for all

experiments. Microbiological growth was never

observed in any of these blanks.

The strains recovered from samples of the

commercial product, stored on Protect Beads at

�80 8C, were resuscitated overnight at 30 8C in

Brain Heart Infusion (BHI, Oxoid, Hampshire, UK).

This culture was diluted with 1/4-strength Ringer

solution (Oxoid). A suitable dilution was used to

inoculate the sterile whole egg product with a

practical concentration of the bacteria of interest.

The inoculated whole egg product was placed at a

preset temperature. Samples were taken at pre-

calculated times (see further), put in sterile test tubes.

and put on ice. This sample was then plate counted.

B. cereus was counted by spread plate method on

Cereus selective agar base according to MOSSEL

(MYPagar, Merck, Darmstadt, Germany), E. cloacae

by pour plate method on Nutrient agar (NA, Oxoid).

Agar plates were incubated for 2 days at 30 8C. All
samples were taken in duplicate at each sampling

time and were independently processed.

2.2. Bacterial growth model

2.2.1. Primary growth model

The bacterial growth model used in this study was

developed by Baranyi and Roberts (1995). To

simulate dynamic temperature conditions the model

must be used in its differential equation form:

dn

dt
¼ q tð Þ

1þ q tð Þ lmax T tð Þð Þ
�
1� en tð Þ�nmax

�
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dq

dt
¼ lmax T tð Þð Þq tð Þ

n 0ð Þ ¼ n0

q 0ð Þ ¼ q0 ð1Þ

Here, n(t) denotes the natural logarithm of the cell

density (ln(cfu/ml)), nmax is the natural logarithm of

the maximum population concentration (ln(cfu/ml)),

q(t) (�) is a measure of the physiological state of the

cell and is closely related with the lag phase, and

lmax(T(t)) (h
�1) is the maximum specific growth rate,

dependent on temperature (T (8C)) and consequently

on time (t (h)).

2.2.2. Secondary temperature dependence model

The square root model (Ratkowsky et al., 1982)

has proven its efficiency to describe the temperature

dependence of bacterial growth in the sub-optimal

temperature range.

ffiffiffiffiffiffiffiffiffi
lmax

p ¼ b
�
T � Tmin

�
ð2Þ

b (h�0.5d 8C) and Tmin (8C) are the model parameters,

with Tmin defined as the theoretical minimum growth

temperature.

2.3. Optimal experimental design

The basic concepts of optimal experimental design

are described elsewhere (Froment and Bischoff, 1990;

Grijspeerdt and Vanrolleghem, 1999; Bernaerts et al.,

2000). In predictive microbiology, the secondary

model parameters are traditionally estimated from a

series of static experiments. An experiment under

dynamic temperature conditions contains potentially

more information, which could result in a more

efficient parameter estimation process. The possible

dynamic temperature conditions are infinite, but

practical considerations impose some constraints:

! Only temperature steps are considered. Other

possibilities such as temperature pulses or sinus-

oidal profiles are more difficult to implement;

Bernaerts et al. (2000) showed that a step profile

was the most informative among a series of

possible temperature profiles.
! The temperature difference between 2 successive

steps should preferably not be larger than 5 8C to

avoid the causation of a new lag time (Zwietering

et al., 1994; Bernaerts et al., 2002; Swinnen et al.,

2003).

! The total time of an experiment should be kept

within practical limits.
2.3.1. Temperature profile

Even when limiting ourselves to step profiles, there

remains an infinite choice in possible temperature

profiles. Preliminary selection is necessary. Two or

more temperature steps are beneficial for improving

inter-parameter correlation (Bernaerts et al., 2002),

but they make planning the experiments more

difficult. For practical reasons, the calculations in this

paper were limited to a single temperature step, within

the constraints outlined before. The procedure is then

to find the optimum time at which the temperature

step should be placed and the magnitude of the

temperature shift, which is a priori limited to a

maximum of 5 8C.
The criterion to be calculated involves the compu-

tation of a characteristic of the Fisher information

matrix F (Bernaerts et al., 2000). Maximising det(F)

leads to minimising the estimation errors on the

parameters (D-optimal criterion). Alternatively, max-

imising the smallest eigenvalue of F leads to a

maximum decorrelation of the parameter estimates

(E-optimal criterion). In this paper, the D-optimal

criterion will be used.

2.3.2. Optimal sampling

Grijspeerdt and Vanrolleghem (1999) described an

optimal method for sampling growth curves for

experiments at constant temperature. This procedure

was extended for dynamic experimental conditions

allowing determining optimal sampling points of a

bacterial growth curve for a temperature step profile.

The original method also comprised a Monte Carlo

simulation step to quantify the uncertainties of the

optimal sampling points. Although theoretically

straightforward to extend for dynamic conditions,

the computing requirements made it practically

impossible to assess the uncertainty of the optimal

sampling times. The results should be interpreted

accordingly, and it is strongly advisable to sample

more points spread around the predicted optimal
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Fig. 1. Experimental results and best model fit for the first single

step experiment for B. cereus.
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timings. An experimental sampling plan should keep

this in mind.

Due to the long experimental times needed, it is not

trivial to work out the most efficient experimental

sampling scheme. This scheme should take working

hours into account, combined with the fact that the

sampling times positions have a certain degree of

uncertainty. A spreadsheet application was developed

to assess alternative starting points. As mentioned

before, these times are approximate. To increase the

reliability of the results all the samples were done in

twofold. Moreover, because of the uncertain basis of

the design, it is advisable to take more samples if

possible, in order to minimise the risk that a crucial

time zone would be missed. These additional samples

would be preferably spread over the day.

l))

14

16

18

20

14

15

16
3. Practical examples

3.1. Bacillus cereus

3.1.1. Preliminary data

The starting point for any optimal experimental

design for parameter estimation requires a minimal

degree of a priori knowledge about the parameter

values. There is considerable work done on predictive

modelling of B. cereus growth (e.g., Baker and

Griffiths, 1993; Benedict et al., 1993; Chorin et al.,

1997), but we could not locate any in eggs. Based on

the work of Chorin et al. (1997), the following

preliminary Ratkowsky-parameters were obtained:

b=0.036 h�0.5d 8C and Tmin=6.26 8C.

3.1.2. Dynamic temperature profile experiments

An optimal single-step experiment was calculated,

using the preliminary Ratkowsky values as a starting

point, according to the D-optimal criterion. The
Table 1

Optimal temperature shift for the B. cereus single-step experiment

tswitch (h) T1 (8C) T2 (8C) tf (h) Det (F)

40 15 20 114 36.99

35 15 20 111 32.81

30 15 20 108 28.13

tswitch is the switching time, T1 and T2 are the temperatures before

and after the switch, respectively, and tf is the predicted running

time of the experiment.
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Fig. 2. Experimental results and best model fit for the second single

step experiment for B. cereus.
calculations were done assuming a starting concen-

tration of 103 cfu/ml, an asymptotic concentration of

8.5�109 cfu/ml and q0=e (Baranyi and Roberts,

1995). The three best conditions are summarized in

Table 1, together with the total required experiment

time.

The optimising process tends to favor long

running experiments at relatively low temperature,

making it more difficult to do the experiment in

practice. The experimental data points and the best

fitted Baranyi-model for the most optimum temper-

ature profile in Table 1 are shown in Fig. 1. The

main source of uncertainty is the q0-parameter. An

ad hoc value was presumed for the calculation of

the temperature profile and the optimal sampling

points. This is visible in Fig. 1; the lag phase is
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Table 2

Parameter estimates and joint confidence limits for the B. cereus

second temperature step experiment

Parameter Estimate Standard error 95% confidence interval

b (h�0.5d 8C) 0.0637 3.24�10�6 0.0552–0.0723

Tmin (8C) 5.76 0.182 4.25–7.27

q0 2.10 0.161 0.201–4.004
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clearly not sufficiently covered by the experimental

points. Therefore the Baranyi-model was fitted to

the experimental data points using three degrees of

freedom: q0, and the Ratkowsky parameters b and

Tmin. The parameters could not be estimated

significantly, so another experiment was necessary.

The estimates obtained in this first experiment

(b=0.032 h�0.5d 8C, Tmin=0.18 8C, and q0=1.32)
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Fig. 3. 2D projections of the 95% joint confidence region for the different p

estimates.
were used to calculate the next optimal temperature

profile.

The best combination according to the optimal

D-criterion was a temperature step from 10 to 15 8C
after 30 h, with a predicted running time of 94 h.

The resulting growth curve, which was sampled

according to an optimal sampling scheme as outlined

before, is shown in Fig. 2.

Again, three degrees of freedom were used for the

fitting process. The resulting parameter estimates had

much better properties this time, as can be seen in

Table 2 where the 95% confidence intervals are

shown. Significant estimation was possible for all

three parameters. It has to be noted that a limited lack

of fit can be observed at the end of the first

temperature step and in late exponential phase. This
b/bopt
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is probably due to fixing the shape parameters of the

Baranyi-model, a procedure suggested by Baranyi and

Roberts (1995) and applied in numerous predictive

modelling studies. As the lack of fit is very limited,

the impact on the other parameter estimates can be

expected to be limited. Including the shape parameters

in the fitting process would only marginally improve

the model fit not justifying the introduction of two

extra parameters.

The joint confidence regions of the parameter

estimates are well shaped, as can be seen in Fig. 3.

The correlation matrix shown in Eq. (3) reveals a

relatively high inter-parameter correlation of 0.97

between b and Tmin. This is a known artefact of

square root type models (Rosso et al., 1995). The

obtained value of 0.97 is in the same order of
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3.2. Enterobacter cloacae

3.2.1. Static experiments

No useful experimental data could be located for

this particular spoilage organism. To obtain prelimi-

nary parameter values, a limited number of static

growth curves were determined at only three temper-

atures: 10, 25, and 30 8C (Fig. 4). From these results,
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Fig. 5. Experimental results and best model fit for the E. cloacae

single-step temperature experiment.
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the square root parameters were calculated in the

traditional way, resulting in b=0.0341 and Tmin=0.821

8C. Since only three points were used to estimate

these parameter values, it is not surprising that they

could not be estimated significantly. However, a good

estimation was obtained for q0 for all three cases,

which were all within the individual 95% confidence

limits. Therefore the average of the three q0 estimates

(0.494) was assumed to be a fixed value for the

dynamic temperature experiment. This is justified by

the standardised preparation procedure of the different

cultures, so that these cultures have the same history

when starting the experiments and consequently q0
can be considered to be constant (Baranyi and

Roberts, 1995).

3.2.2. Dynamic temperature experiments

The optimal single-step temperature profile was

calculated starting from the preliminary values

obtained from the static experiments. The best single

temperature step experiment according to the optimal

D-criterion was a temperature step from 10 to 15 8C at

a switching time of 45 h and a predicted running time

of 120 h. This experiment was carried out analogously

as for B. cereus and is shown in Fig. 5. Obviously, the
Table 3

Parameter estimates and joint confidence limits for the E. cloacae

dynamic temperature experiment

Parameter Estimate Standard error 95% confidence limits

b (h�0.5d 8C) 0.0421 1.78�10�7 0.0402–0.0439

Tmin (8C) 2.42 1.04�10�2 1.98–2.87
.

fit is quite good resulting in good estimations for b

and Tmin.

The estimation errors are smaller than for the B.

cereus case, and significantly different from zero

(Table 3). The joint confidence region again reveals

the estimation problems typically associated with the

square root model, but to a lesser extent than the B.

cereus case, as is evident from the lower inter-

parameter correlation of 0.90. Note that comparison

of Figs. 3 and 6 is not straightforward due to the

difference in parameter dimensionality of both cases.
4. Model prediction errors

Using the optimal experimental designs, the model

parameters have been estimated with a certain

precision. In order to assess the impact of the

parameter estimates precision on the practical use of

the models, the prediction errors needs to be analysed.

This can be done using Monte Carlo simulation

(Poschet and Van Impe, 1999; Poschet et al., 2003):

the parameter estimates distribution is sampled for a

large number of iterations and for each parameter

combination, the model output is calculated. The

result is a large number of output curves from which

simulated quantiles can then be calculated to visualize

the prediction error limits. An important aspect for the

case presented here is the inter-parameter correlation.

As these are relatively high, they should be taken into

account in the Monte Carlo simulation (Haas et al.,

1999; Verdonck, 2003). Different methodologies exist
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to incorporate correlation in a Monte Carlo simu-

lation, the most frequent one being the empiric

method of Iman and Conover (1982) based on rank-

order correlations, or bootstrap-based methods (Davi-

son and Hinkley, 1997). The correlation information

available here is in the format of Pearson’s correlation

coefficients as opposed to rank-order correlation, and

the computational requirements for a bootstrap-based

method turned out to be too computing intensive to be

practically feasible. An elegant solution can be found

in the following method developed by Scott (Richard

T. Scott, Kodak, Rochester, New York, personal

communication).

Suppose that x and y are two normally distributed

variables with mean lx and ly, and variance rx and

ry, respectively. There exists a correlation qxy

between x and y. To generate two random variables

X and Y with the same correlation by resampling x

and y, the following procedure is followed:

X ¼ Nðlx;rxÞ

Y ¼
�

qxy

�
X � lx

rx

	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

xy

q
N 0;1ð ÞÞry þ ly

ð4Þ

N(l, r) is a normal random generating function

with mean l and variance r. The extension to three

variables, like the B. cereus case is straightforward.

The normal distribution parameters l and r can

be directly obtained from the estimation results

(Tables 2 and 3), as is the case for the correlation

coefficients. Due to the dependent sampling, it is not

possible to use Latin Hypercube Sampling (Vose,

1996) and the less-efficient Monte Carlo sampling

has to be utilised. Therefore, the number of iterations

was taken sufficiently high. 100000 iterations were

carried out for both the Bacillus and the Enter-

obacter models and the resulting 95% prediction

intervals are indicated in Figs. 2 and 5. The limits

are not symmetric against the model output using the

optimal parameter estimates, due to the inter-param-

eter correlation. It is known that the effect of

correlations on resampling procedures is mostly felt

at the boundaries of the resulting distribution

(Verdonck, 2003), such as the 95% limits calculated

here. The prediction limits are wider for the B.
cereus case, in line with the higher inaccuracy of the

parameter estimates. The range of the 95% interval

remains below 2.3 on natural logarithmic scale, a

normal variation on microbial count data in practice

(Jarvis, 1989).

The above outlined procedure uses the individual

parameter distributions as a starting point. This

introduces a minimal bias as opposed to using the

full multivariate joint parameter distribution accessi-

ble by bootstrapping methods (Haas et al., 1999).
5. Discussion

The square root model has its flaws, as is

demonstrated by the high inter-parameter correla-

tions. The cardinal model as presented by Rosso et

al. (1995) was demonstrated to have better parameter

estimating properties, but has the disadvantage that it

contains five model parameters and needs full

temperature range data for calibration. It is unlikely

that eggs will be stored at super-optimal temper-

atures, so it does not seem worthwhile to conduct

experiments at these high temperatures. Other types

of temperature models exist, such as the Arrhenius

type models presented by Davey et al. (Davey, 1989;

Daughtry et al., 1997), neural networks (Geeraerd et

al., 1998; Hajmeer and Basheer, 2003), and poly-

nomial models. These models have not yet found

widespread use in predictive microbiology. In prac-

tice, the square root model still appears to be the

most often used for predictive modelling in the sub-

optimal temperature range; the main reason why it

was used in this paper.

Despite being a quite established methodology,

OED/PE has not been frequently applied in the field

of predictive microbiology. The examples presented

in this paper show it to be a means to optimise

available resources. Both cases presented required a

minimum number of experiments to obtain reason-

able and usable estimates for the square root model

parameters.

For the B. cereus case, where preliminary infor-

mation was available, two experiments already

sufficed. These experiments, all under dynamic

temperature conditions, are more elaborate than

experiments at constant temperature in the sense that

one has to be able to impose the dynamic environ-
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ment. Otherwise, the needed efforts to obtain a growth

curve are quite comparable in terms of sampling and

experimental running times. The E. cloacae example

required four experiments; three static and one

dynamic were sufficient to obtain significant param-

eter estimates. The lack of prior knowledge translated

in more required effort. Nevertheless, using the

traditional approach would probably require more

growth curves to obtain comparable results.

The model prediction errors fall between reason-

able limits, as was verified using Monte Carlo

simulations. The parameter estimates could probably

have been refined in terms of accuracy and inter-

parameter correlation by planning extra experiments,

especially for the B. cereus case. However, in view of

the considerable variability inherently present when

dealing with microbial counts data, there is a limit to

the information that can be gained by doing extra

experiments. Future research could aid on finding the

optimal number of experiments in terms of parameter

estimation gain versus experimental effort for some

practical examples.

Comparing to traditional method of modelling the

temperature influence on primary predictive micro-

biological models, it is clear that OED/PE can be

beneficial in terms of the necessary experimental

effort. An even more clear advantage would emerge

when more factors are considered, such as pH and

water activity. The amount of experimental work

following the traditional method tends to get very

large in these cases (Devlieghere et al., 2000; Wijtzes

et al., 2001). This could enhance the potential gain of

OED/PE, despite the fact that the required calculations

to determine optimal profiles would be more involved

than in the one-dimensional case. Future research

should focus on expanding OED/PE to such multi-

dimensional cases.
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